A self-dividing number is a number that is divisible by every digit it contains.
For example, 128 is a self-dividing number because 128 % 1 == 0
, 128 % 2 == 0
, and 128 % 8 == 0
.
Also, a self-dividing number is not allowed to contain the digit zero.
Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.
Example 1:
Input: left = 1, right = 22 Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]
Note:
- The boundaries of each input argument are
1 <= left <= right <= 10000
.
这道题让我们找一个给定范围内的所有的自整除数字,所谓的自整除数字就是该数字可以整除其每一个位上的数字。既然这道题是Easy类,那么一般来说不需要用tricky的方法,直接暴力搜索就行了,遍历区间内的所有数字,然后调用子函数判断其是否是自整除数,是的话就加入结果res中。在子函数中,我们先把数字转为字符串,然后遍历每个字符,只要其为0,或者num无法整除该位上的数字,就返回false,循环结束后返回true,参见代码如下:
解法一:
class Solution { public: vector<int> selfDividingNumbers(int left, int right) { vector<int> res; for (int i = left; i <= right; ++i) { if (check(i)) res.push_back(i); } return res; } bool check(int num) { string str = to_string(num); for (char c : str) { if (c == '0' || num % (c - '0')) return false; } return true; } };
我们可以不用子函数,直接在大的for循环中加上一个for循环进行判断即可,参见代码如下:
解法二:
class Solution { public: vector<int> selfDividingNumbers(int left, int right) { vector<int> res; for (int i = left, n = 0; i <= right; ++i) { for (n = i; n > 0; n /= 10) { if (n % 10 == 0 || i % (n % 10) != 0) break; } if (n == 0) res.push_back(i); } return res; } };
类似题目:
参考资料: