• [LeetCode] Reconstruct Itinerary 重建行程单


    Given a list of airline tickets represented by pairs of departure and arrival airports [from, to], reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK. Thus, the itinerary must begin with JFK.

    Note:

    1. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string. For example, the itinerary ["JFK", "LGA"] has a smaller lexical order than ["JFK", "LGB"].
    2. All airports are represented by three capital letters (IATA code).
    3. You may assume all tickets may form at least one valid itinerary.

    Example 1:
    tickets = [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
    Return ["JFK", "MUC", "LHR", "SFO", "SJC"].

    Example 2:
    tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
    Return ["JFK","ATL","JFK","SFO","ATL","SFO"].
    Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"]. But it is larger in lexical order.

    Credits:
    Special thanks to @dietpepsi for adding this problem and creating all test cases.

    这道题给我们一堆飞机票,让我们建立一个行程单,如果有多种方法,取其中字母顺序小的那种方法。这道题的本质是有向图的遍历问题,那么LeetCode关于有向图的题只有两道Course ScheduleCourse Schedule II,而那两道是关于有向图的顶点的遍历的,而本题是关于有向图的边的遍历。每张机票都是有向图的一条边,我们需要找出一条经过所有边的路径,那么DFS不是我们的不二选择。先来看递归的结果,我们首先把图建立起来,通过邻接链表来建立。由于题目要求解法按字母顺序小的,那么我们考虑用multiset,可以自动排序。等我们图建立好了以后,从节点JFK开始遍历,只要当前节点映射的multiset里有节点,我们取出这个节点,将其在multiset里删掉,然后继续递归遍历这个节点,由于题目中限定了一定会有解,那么等图中所有的multiset中都没有节点的时候,我们把当前节点存入结果中,然后再一层层回溯回去,将当前节点都存入结果,那么最后我们结果中存的顺序和我们需要的相反的,我们最后再翻转一下即可,参见代码如下:

    解法一:

    class Solution {
    public:
        vector<string> findItinerary(vector<pair<string, string>> tickets) {
            vector<string> res;
            unordered_map<string, multiset<string>> m;
            for (auto a : tickets) {
                m[a.first].insert(a.second);
            }
            dfs(m, "JFK", res);
            return vector<string> (res.rbegin(), res.rend());
        }
        void dfs(unordered_map<string, multiset<string>>& m, string s, vector<string>& res) {
            while (m[s].size()) {
                string t = *m[s].begin();
                m[s].erase(m[s].begin());
                dfs(m, t, res);
            }
            res.push_back(s);
        }
    };

    下面我们来看迭代的解法,需要借助栈来实现,来实现回溯功能。比如对下面这个例子:

    tickets = [["JFK", "KUL"], ["JFK", "NRT"], ["MRT", "JFK"]]

    那么建立的图如下:

    JFK -> KUL, NRT

    NRT -> JFK

    由于multiset是按顺序存的,所有KUL会在NRT之前,那么我们起始从JFK开始遍历,先到KUL,但是KUL没有下家了,这时候图中的边并没有遍历完,此时我们需要将KUL存入栈中,然后继续往下遍历,最后再把栈里的节点存回结果即可,参见代码如下:

    解法二:

    class Solution {
    public:
        vector<string> findItinerary(vector<pair<string, string>> tickets) {
            vector<string> res;
            stack<string> st{{"JFK"}};
            unordered_map<string, multiset<string>> m;
            for (auto t : tickets) {
                m[t.first].insert(t.second);
            }
            while (!st.empty()) {
                string t = st.top(); 
                if (m[t].empty()) {
                    res.insert(res.begin(), t);
                    st.pop();
                } else {
                    st.push(*m[t].begin());
                    m[t].erase(m[t].begin());
                }
            }
            return res;
        }
    };

    类似题目:

    Course Schedule

    Course Schedule II

    参考资料:

    https://leetcode.com/problems/reconstruct-itinerary/

    https://discuss.leetcode.com/topic/36370/short-ruby-python-java-c

    https://discuss.leetcode.com/topic/36721/short-c-dfs-iterative-44ms-solution-with-explanation-no-recursive-calls-no-backtracking

    LeetCode All in One 题目讲解汇总(持续更新中...)

  • 相关阅读:
    D. Longest Subsequence
    线段树入门HDU_1754
    poj_2503(map映射)
    HDU_4826
    poj_2251
    day 44 单表查询,多表查询
    day43 字段的修改、添加和删除,多表关系(外键),单表详细操作(增删改查)
    day 42 数据库的配置、数据库与表的一些剩余操作、用户操作、数据库表的引擎、数据库的模式、mysql支持的数据类型、约束
    day41 数据库介绍、数据库基本操作
    day 40 线程队列、线程定时器、进程池和线程池、同步与异步、用多线程来写socket服务端与客户端
  • 原文地址:https://www.cnblogs.com/grandyang/p/5183210.html
Copyright © 2020-2023  润新知