• tensorflow版的bvlc模型


         研究相关的图片分类,偶然看到bvlc模型,但是没有tensorflow版本的,所以将caffe版本的改成了tensorflow的:

    关于模型这个图:

     

    下面贴出通用模板:

      1 from __future__ import print_function
      2 import tensorflow as tf
      3 import numpy as np
      4 from scipy.misc import imread, imresize
      5 
      6 
      7 class BVLG:
      8     def __init__(self, imgs, weights=None, sess=None):
      9         self.imgs = imgs
     10         self.convlayers()
     11         self.fc_layers()
     12 
     13         self.probs = tf.nn.softmax(self.fc3l)
     14         if weights is not None and sess is not None:
     15             self.load_weights(weights,sess)
     16 
     17     def convlayers(self):
     18         self.parameters = []
     19 
     20         # zero-mean input
     21         with tf.name_scope('preprocess') as scope:
     22             mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean')
     23             images = self.imgs - mean
     24 
     25         # conv1
     26         with tf.name_scope('conv1') as scope:
     27             kernel = tf.Variable(tf.truncated_normal([7, 7, 3, 96], dtype=tf.float32,
     28                                                      stddev=1e-1), name='weights')
     29             conv = tf.nn.conv2d(images, kernel, [3, 3, 1, 1], padding='SAME')
     30             biases = tf.Variable(tf.constant(0.0, shape=[96], dtype=tf.float32),
     31                                  trainable=True, name='biases')
     32             out = tf.nn.bias_add(conv, biases)
     33             self.conv1 = tf.nn.relu(out, name=scope)
     34             self.parameters += [kernel, biases]
     35 
     36         # pool1
     37         self.pool1 = tf.nn.max_pool(self.conv1,
     38                                     ksize=[1, 3, 3, 1],
     39                                     strides=[1, 2, 2, 1],
     40                                     padding='SAME',
     41                                     name='pool1')
     42 
     43         # conv2
     44         with tf.name_scope('conv2') as scope:
     45             kernel = tf.Variable(tf.truncated_normal([4, 4, 96, 256], dtype=tf.float32,
     46                                                      stddev=1e-1), name='weights')
     47             conv = tf.nn.conv2d(self.pool1, kernel, [1, 1, 1, 1], padding='SAME')
     48             biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
     49                                  trainable=True, name='biases')
     50             out = tf.nn.bias_add(conv, biases)
     51             self.conv2_1 = tf.nn.relu(out, name=scope)
     52             self.parameters += [kernel, biases]
     53 
     54 
     55         # pool2
     56         self.pool2 = tf.nn.max_pool(self.conv2,
     57                                     ksize=[1, 3, 3, 1],
     58                                     strides=[1, 2, 2, 1],
     59                                     padding='SAME',
     60                                     name='pool2')
     61 
     62         # conv5
     63         with tf.name_scope('conv5') as scope:
     64             kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32,
     65                                                      stddev=1e-1), name='weights')
     66             conv = tf.nn.conv2d(self.pool2, kernel, [1, 1, 1, 1], padding='SAME')
     67             biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
     68                                  trainable=True, name='biases')
     69             out = tf.nn.bias_add(conv, biases)
     70             self.conv5 = tf.nn.relu(out, name=scope)
     71             self.parameters += [kernel, biases]
     72 
     73         # pool5
     74         self.pool5 = tf.nn.max_pool(self.conv5,
     75                                     ksize=[1, 2, 2, 1],
     76                                     strides=[1, 2, 2, 1],
     77                                     padding='SAME',
     78                                     name='pool4')
     79 
     80     def fc_layers(self):
     81         # fc1
     82         with tf.name_scope('fc1') as scope:
     83             shape = int(np.prod(self.pool5.get_shape()[1:]))
     84             fc1w = tf.Variable(tf.truncated_normal([shape, 4096],
     85                                                    dtype=tf.float32,
     86                                                    stddev=1e-1), name='weights')
     87             fc1b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32),
     88                                trainable=True, name='biases')
     89             pool5_flat = tf.reshape(self.pool5, [-1, shape])
     90             fc1l = tf.nn.bias_add(tf.matmul(pool5_flat, fc1w), fc1b)
     91             self.fc1 = tf.nn.relu(fc1l)
     92             self.parameters += [fc1w, fc1b]
     93 
     94         # fc3
     95         with tf.name_scope('fc3') as scope:
     96             fc3w = tf.Variable(tf.truncated_normal([4096, 587],
     97                                                    dtype=tf.float32,
     98                                                    stddev=1e-1), name='weights')
     99             fc3b = tf.Variable(tf.constant(1.0, shape=[587], dtype=tf.float32),
    100                                trainable=True, name='biases')
    101             self.fc3l = tf.nn.bias_add(tf.matmul(self.fc2, fc3w), fc3b)
    102             self.parameters += [fc3w, fc3b]

    caffe版本的ImageNet模型地址: https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

  • 相关阅读:
    51nod——1174 区间中最大的数(ST)
    「学习笔记」Ubuntu 下手动安装 Emacs
    [学习笔记] 2-SAT
    「解题报告」 [JXOI2017]数列 (DP)
    「解题报告」 [UOJ#62] 怎样跑得更快 (莫比乌斯反演)
    「学习笔记」杜教筛
    「学习笔记」Dirichlet卷积 莫比乌斯函数 莫比乌斯反演
    「学习笔记」向量外积(叉乘)
    网络流24题
    「解题报告」[网络流24题] 16.数字梯形问题 (最大费用最大流)
  • 原文地址:https://www.cnblogs.com/gongxijun/p/5960771.html
Copyright © 2020-2023  润新知