• hdu-------1081To The Max


    To The Max

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 7681    Accepted Submission(s): 3724


    Problem Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.
     
    Input
    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
     
    Output
    Output the sum of the maximal sub-rectangle.
     
    Sample Input
    4
    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
     
    Sample Output
    15
     
    Source
    这道题个人觉得是到灰常好的题目,适合不同层次的人做,求的是最大连续子矩阵和....
    方法一:
    简单的模拟即可。首先求出每个阶段只和,然后得到这个状态,然后进行矩阵规划,求最大值即可
    代码浅显易懂:
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<iostream>
     5 using namespace std;
     6 int arr[101][101];
     7 int sum[101][101];
     8 int main()
     9 {
    10     int nn,i,j,ans,temp;
    11    // freopen("test.in","r",stdin);
    12     while(scanf("%d",&nn)!=EOF)
    13     {
    14        ans=0;
    15       memset(sum,0,sizeof(sum));
    16       for(i=1;i<=nn;i++)
    17       {
    18           for(j=1;j<=nn;j++)
    19           {
    20            scanf("%d",&arr[i][j]);
    21            sum[i][j]+=arr[i][j]+sum[i][j-1];   //求出每一层逐步之和
    22           }
    23       }  
    24       for(i=2;i<=nn;i++)
    25       {
    26           for(j=1;j<=nn;j++)
    27           {
    28             sum[i][j]+=sum[i-1][j];   //在和的基础上,逐步求出最大和
    29           }
    30       }
    31         ans=0;
    32     for(int rr=1;rr<=nn;rr++)
    33     {
    34       for(int cc=1;cc<=nn;cc++)
    35       {
    36        for(i=rr;i<=nn;i++)
    37        {
    38          for(j=cc;j<=nn;j++)
    39          {
    40            temp=sum[i][j]-sum[i][cc-1]-sum[rr-1][j]+sum[rr-1][cc-1];  
    41            if(ans<temp)  ans=temp;
    42          }
    43        }
    44       }
    45     }
    46     printf("%d
    ",ans);
    47  }
    48     return 0;
    49 }
    View Code

     方法二:

    采用状态压缩的方式进行DP求解最大值......!

    代码:

     1     /*基于一串连续数字进行求解的扩展*/
     2     /*coder Gxjun 1081*/
     3     #include<iostream>
     4     #include<cstdio>
     5     #include<cstring>
     6     #include<cstdlib>
     7     using namespace std;
     8     const int nn=101;
     9     int arr[nn][nn],sum[nn][nn];
    10     int main()
    11     {
    12        int n,i,j,maxc,res,ans;
    13        //  freopen("test.in","r",stdin);
    14        while(scanf("%d",&n)!=EOF)
    15        {
    16           memset(sum,0,sizeof(sum));
    17          for(i=1;i<=n;i++)
    18            for(j=1;j<=n;j++)
    19            {
    20              scanf("%d",&arr[i][j]);
    21              sum[j][i]=sum[j][i-1]+arr[i][j];
    22            }
    23              ans=0;
    24          for(i=1;i<=n;i++){
    25 
    26            for(j=i;j<=n;j++)
    27            {
    28                res=maxc=0;
    29               for(int k=1;k<=n;k++)
    30               {
    31                  maxc+=sum[k][j]-sum[k][i-1];
    32                 if(maxc<=0)  maxc=0;
    33                 else
    34                  if(maxc>res) res=maxc;
    35               }
    36                 if(ans<res)  ans=res;
    37            }
    38          }
    39          printf("%d
    ",ans);
    40        }
    41         return 0;
    42     }
    View Code
  • 相关阅读:
    字节流、字符流
    ArrayList、LinkedList、Vector 的区别。
    Java 为每个原始类型提供了哪些包装类型:
    int 和 Integer 有什么区别
    怎样自动把报表插入到 word 文档中
    web 报表中电子图章 / 水印的轻松实现
    玩转报表排名
    报表设计技巧之隔行异色
    单据类报表的制作
    轻松 get 报表模糊查询技能
  • 原文地址:https://www.cnblogs.com/gongxijun/p/3778702.html
Copyright © 2020-2023  润新知