• Python学习【第四篇】


    1、迭代器&生成器
    2、装饰器
      1.基本装饰器
      2.多参数装饰器
    3、递归

    4、算法基础:二分查找、二维数组转换

    5、正则表达式

    6、常用模块学习

    7、Json & pickle数据序列化

    8、软件目录结构规范

    7、练习:计算器开发

      1.实现加减乘除及拓号优先级解析
      2.用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) )等类似公式后,必须自己解析里面的(),+,-,*,/符号和公式,运算后得出结果,结果必须与真实的计算器所得出的结果一致

    一、迭代器&生成器

    迭代器

     迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素访问完结束。迭代器只能往前不会后退,另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合于遍历一些巨大的或是无限的集合,比如几个G的文件

    特点:

      1、访问者不需要关心迭代器内部的结构,仅需通过next()方法不断去取下一个内容

      2、不能随机访问集合中的某个值,只能从头到尾依次访问

      3、访问到一半时不能往回退

      4、便于循环比较大的数据集合,节省内存

    生成一个迭代器

    >>> a = iter([1,2,3,4,5])
    >>> a
    <list_iterator object at 0x101402630>
    >>> a.next()
    1
    >>> a.next()
    2
    >>> a.next()
    3
    >>> a.next()
    4
    >>> a.next()
    5
    >>> a.next()
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration

    Repeated calls to the iterator’s __next__() method (or passing it to the built-in function next()) return successive items in the stream. When no more data are available a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls to its __next__() method just raise StopIteration again.

    生成器

    定义:一个函数调用时返回一个迭代器,那这个函数就叫做生成器(generator),如果函数中包含yield语法,那这个函数就会变成生成器 

    代码:

    def cash_out(amount):
    while amount >0:
    amount -= 1
    yield 1
    print("取钱")

    ATM = cash_out(5)

    print("取到钱 %s 万" % ATM.next())
    print("花掉花掉!")
    print("取到钱 %s 万" % ATM.next())
    print("取到钱 %s 万" % ATM.next())
    print("花掉花掉!")
    print("取到钱 %s 万" % ATM.next())
    print("取到钱 %s 万" % ATM.next())
    print("取到钱 %s 万" % ATM.next()) #到这时钱就取没了,再取就报错了
    print("取到钱 %s 万" % ATM.next())

    作用:

    这个yield的主要效果,就是可以使函数中断,并保存中断状态,中断后,代码可以继续往下执行,过一段时间还可以再重新调用这个函数,从上次yield的下一句开始执行。

    另外,还可通过yield实现在单线程的情况下实现并发运算的效果

    #!/usr/bin/env python
    #-*- coding: utf8 -*-
    import time
    def consumer(name):
        print("%s 准备吃包子!" %name)
        while True:
           baozi = yield
           print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
    
    def producer(name):
        c = consumer('A')
        c2 = consumer('B')
        c.next()
        c2.next()
        print("老板开始准备做包子!")
        for i in range(10):
            time.sleep(1)
            print("做了2个包子!")
            c.send(i)
            c2.send(i)
    
    producer("insec")
    

      

    装饰器

    递归

    特点:

    递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
    递归算法解决问题的特点:
    (1) 递归就是在过程或函数里调用自身。
    (2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
    (3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
    (4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。

    要求

    递归算法所体现的“重复”一般有三个要求:
    一是每次调用在规模上都有所缩小(通常是减半);
    二是相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入);
    三是在问题的规模极小时必须用直接给出解答而不再进行递归调用,因而每次递归调用都是有条件的(以规模未达到直接解答的大小为条件),无条件递归调用将会成为死循环而不能正常结束。

    实现

    1. 通过递归实现2分查找

     现有列表 primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97], 要求用最快的方式 找出23 。 请A, B ,C 三个同学来回答这个问题。 

    A: 这个很简单,直接用 if 41 in primes:print("found it!") , 让你自己实现,不是让你用现成提供的功能
    B: 因为这个列表是有序的, 我可以把列表从中截取一半,大概如下:
        p1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,41]
        p2 = [ 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
     然后看p1[-1]也就是41是否比23大, 如果比23大就代表23肯定在p1里面,否则那就肯定在p2里面。现在我们知道23比41小,所以23肯定在p1里,但p1里依然有很多元素, 怎么找到23呢?很简单,依然按上一次的方法,把p1分成2部分,如下:
        p1_a = [2, 3, 5, 7, 11, 13,17]
        p1_b = [19, 23, 29, 31, 37,41]
     然后我们发现,23 比p1_a最后一个值 17 大,那代表23肯定在p1_b中, p1_b中依然有很多元素,那就再按之前的方法继续分半,最终用不了几次,肯定就把23找出来了!
      很好,确实较A的方案强很多。 
    C: 因为根本没思路,虽然自己没思路,但是会谷歌,终于憋出了以下代码:
    def binary_search(data_list,find_num):
        mid_pos = int(len(data_list) /2 ) #find the middle position of the list
        mid_val = data_list[mid_pos] # get the value by it's position
        print(data_list)
        if len(data_list) >1:
            if mid_val > find_num: # means the find_num is in left hand of mid_val
                print("[%s] should be in left of [%s]" %(find_num,mid_val))
                binary_search(data_list[:mid_pos],find_num)
            elif mid_val < find_num: # means the find_num is in the right hand of mid_val
                print("[%s] should be in right of [%s]" %(find_num,mid_val))
                binary_search(data_list[mid_pos:],find_num)
            else: # means the mid_val == find_num
                print("Find ", find_num)
     
        else:
            print("cannot find [%s] in data_list" %find_num)
     
    if __name__ == '__main__':
        primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
        binary_search(primes,67)
    

    以上就是典型的递归用法,在程序里自己调用自己。

    四、算法基础

    需求:生成一个4*4的2维数组并将其顺时针旋转90度

    #!-*- coding:utf8 -*-
     
     
    array=[[col for col in range(5)] for row in range(5)] #初始化一个4*4数组
    #array=[[col for col in 'abcde'] for row in range(5)]
     
    for row in array: #旋转前先看看数组
        print(row)
     
    print('-------------')
    for i,row in enumerate(array):
     
        for index in range(i,len(row)):
            tmp = array[index][i] #get each rows' data by column's index
            array[index][i] = array[i][index] #
            print tmp,array[i][index]  #= tmp
            array[i][index] = tmp
        for r in array:print r
     
        print('--one big loop --')
    

      

    冒泡排序

    将一个不规则的数组按从小到大的顺序进行排序

    data = [10,4,33,21,54,3,8,11,5,22,2,1,17,13,6]
     
    print("before sort:",data)
     
    previous = data[0]
    for j in range(len(data)):
        tmp = 0
        for i in range(len(data)-1):
            if data[i] > data[i+1]:
                tmp=data[i]
                data[i] = data[i+1]
                data[i+1] = tmp
        print(data)
     
    print("after sort:",data)
    

      

    时间复杂度

    (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
    (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

    指数时间

    指的是一个问题求解所需要的计算时间m(n),依输入数据的大小n而呈指数成长(即输入数据的数量依线性成长,所花的时间将会以指数成长)

    for (i=1; i<=n; i++)
           x++;
    for (i=1; i<=n; i++)
         for (j=1; j<=n; j++)
              x++;
    

    第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

    常数时间

    若对于一个算法,T(n)的上界与输入大小无关,则称其具有常数时间,记作O(1)时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称O(n)时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。

    对数时间

    若算法的T(n) = O(log n),则称其具有对数时间

    常见的具有对数时间的算法有二叉树的相关操作和二分搜索。

    对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。

    递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。

    线性时间 

    如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。

    正则表达式

    语法:

    import re #导入模块名
     
    p = re.compile("^[0-9]")  #生成要匹配的正则对象 , ^代表从开头匹配,[0-9]代表匹配0至9的任意一个数字, 所以这里的意思是对传进来的字符串进行匹配,如果这个字符串的开头第一个字符是数字,就代表匹配上了
     
    m = p.match('14534Abc')   #按上面生成的正则对象 去匹配 字符串, 如果能匹配成功,这个m就会有值, 否则m为None<br><br>if m: #不为空代表匹配上了
      print(m.group())    #m.group()返回匹配上的结果,此处为1,因为匹配上的是1这个字符<br>else:<br>  print("doesn't match.")<br>
    

    上面的第2 和第3行也可以合并成一行来写:

    m = p.match("^[0-9]",'14534Abc')
    

    效果是一样的,区别在于,第一种方式是提前对要匹配的格式进行了编译(对匹配公式进行解析),这样再去匹配的时候就不用在编译匹配的格式,第二种简写是每次匹配的时候 都 要进行一次匹配公式的编译,所以,如果你需要从一个5w行的文件中匹配出所有以数字开头的行,建议先把正则公式进行编译再匹配,这样速度会快点。

    匹配格式

    模式描述
    ^ 匹配字符串的开头
    $ 匹配字符串的末尾。
    . 匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。
    [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
    [^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
    re* 匹配0个或多个的表达式。
    re+ 匹配1个或多个的表达式。
    re? 匹配0个或1个由前面的正则表达式定义的片段,非贪婪方式
    re{ n}  
    re{ n,} 精确匹配n个前面表达式。
    re{ n, m} 匹配 n 到 m 次由前面的正则表达式定义的片段,贪婪方式
    a| b 匹配a或b
    (re) G匹配括号内的表达式,也表示一个组
    (?imx) 正则表达式包含三种可选标志:i, m, 或 x 。只影响括号中的区域。
    (?-imx) 正则表达式关闭 i, m, 或 x 可选标志。只影响括号中的区域。
    (?: re) 类似 (...), 但是不表示一个组
    (?imx: re) 在括号中使用i, m, 或 x 可选标志
    (?-imx: re) 在括号中不使用i, m, 或 x 可选标志
    (?#...) 注释.
    (?= re) 前向肯定界定符。如果所含正则表达式,以 ... 表示,在当前位置成功匹配时成功,否则失败。但一旦所含表达式已经尝试,匹配引擎根本没有提高;模式的剩余部分还要尝试界定符的右边。
    (?! re) 前向否定界定符。与肯定界定符相反;当所含表达式不能在字符串当前位置匹配时成功
    (?> re) 匹配的独立模式,省去回溯。
    w 匹配字母数字
    W 匹配非字母数字
    s 匹配任意空白字符,等价于 [ f].
    S 匹配任意非空字符
    d 匹配任意数字,等价于 [0-9].
    D 匹配任意非数字
    A 匹配字符串开始
     匹配字符串结束,如果是存在换行,只匹配到换行前的结束字符串。c
    z 匹配字符串结束
    G 匹配最后匹配完成的位置。
     匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。
    B 匹配非单词边界。'erB' 能匹配 "verb" 中的 'er',但不能匹配 "never" 中的 'er'。
    , , 等. 匹配一个换行符。匹配一个制表符。等
    1...9 匹配第n个分组的子表达式。
    10 匹配第n个分组的子表达式,如果它经匹配。否则指的是八进制字符码的表达式。

      

    正则表达式常用5种操作

    re.match(pattern, string)     # 从头匹配

    re.search(pattern, string)    # 匹配整个字符串,直到找到一个匹配

    re.split()             # 将匹配到的格式当做分割点对字符串分割成列表

    >>>m = re.split("[0-9]", "insec1faker2shy3pray madlifel8")
    >>>print(m);
    

    Json & pickle 数据序列化

    参考 http://www.cnblogs.com/alex3714/articles/5161349.html

    软件目录结构规范

    为什么要设计好目录结构?

    "设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:

    1. 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
    2. 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。

    我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:

    1. 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
    2. 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。

    所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。

    目录组织方式

    关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。

    这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。

    假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:

    Foo/
    |-- bin/
    |   |-- foo
    |
    |-- foo/
    |   |-- tests/
    |   |   |-- __init__.py
    |   |   |-- test_main.py
    |   |
    |   |-- __init__.py
    |   |-- main.py
    |
    |-- docs/
    |   |-- conf.py
    |   |-- abc.rst
    |
    |-- setup.py
    |-- requirements.txt
    |-- README
    

    简要解释一下:

    1. bin/: 存放项目的一些可执行文件,当然你可以起名script/之类的也行。
    2. foo/: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/存放单元测试代码; (3) 程序的入口最好命名为main.py
    3. docs/: 存放一些文档。
    4. setup.py: 安装、部署、打包的脚本。
    5. requirements.txt: 存放软件依赖的外部Python包列表。
    6. README: 项目说明文件。

    除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt,ChangeLog.txt文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章

    下面,再简单讲一下我对这些目录的理解和个人要求吧。

    关于README的内容

    这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

    它需要说明以下几个事项:

    1. 软件定位,软件的基本功能。
    2. 运行代码的方法: 安装环境、启动命令等。
    3. 简要的使用说明。
    4. 代码目录结构说明,更详细点可以说明软件的基本原理。
    5. 常见问题说明。

    我觉得有以上几点是比较好的一个README。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。

    可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。

    关于requirements.txt和setup.py

    setup.py

    一般来说,用setup.py来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。

    这个我是踩过坑的。

    我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:

    1. 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
    2. Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
    3. 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
    4. 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。

    setup.py可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。

    setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py

    当然,简单点自己写个安装脚本(deploy.sh)替代setup.py也未尝不可。

    requirements.txt

    这个文件存在的目的是:

    1. 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在setup.py安装依赖时漏掉软件包。
    2. 方便读者明确项目使用了哪些Python包。

    这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10这种格式,要求是这个格式能被pip识别,这样就可以简单的通过 pip install -r requirements.txt来把所有Python包依赖都装好了。具体格式说明: 点这里

    关于配置文件的使用方法

    注意,在上面的目录结构中,没有将conf.py放在源码目录下,而是放在docs/目录下。

    很多项目对配置文件的使用做法是:

    1. 配置文件写在一个或多个python文件中,比如此处的conf.py。
    2. 项目中哪个模块用到这个配置文件就直接通过import conf这种形式来在代码中使用配置。

    这种做法我不太赞同:

    1. 这让单元测试变得困难(因为模块内部依赖了外部配置)
    2. 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
    3. 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖conf.py这个文件。

    所以,我认为配置的使用,更好的方式是,

    1. 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
    2. 程序的配置也是可以灵活控制的。

    能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。

    所以,不应当在代码中直接import conf来使用配置文件。上面目录结构中的conf.py,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py你可以换个类似的名字,比如settings.py。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml之类的。

    练习

    模拟实现一个ATM + 购物商城程序

    1. 额度 15000或自定义
    2. 实现购物商城,买东西加入 购物车,调用信用卡接口结账
    3. 可以提现,手续费5%
    4. 每月22号出账单,每月10号为还款日,过期未还,按欠款总额 万分之5 每日计息
    5. 支持多账户登录
    6. 支持账户间转账
    7. 记录每月日常消费流水
    8. 提供还款接口
    9. ATM记录操作日志 
    10. 提供管理接口,包括添加账户、用户额度,冻结账户等。。。
    11. 用户认证用装饰器

    示例代码 https://github.com/triaquae/py3_training/tree/master/atm 

    简易流程图:https://www.processon.com/view/link/589eb841e4b0999184934329  

  • 相关阅读:
    Docker windows 安装MySql和Tomcat
    Python2 Python3 爬取赶集网租房信息,带源码分析
    BeautifulSoup 一行代码获取今日日期,与smtplib结合
    Python3.x 发送邮件
    Python3 pymysql连接mysql数据库 windows
    urllib2.HTTPError: HTTP Error 403: Forbidden的解决方案
    BeautifulSoup([your markup]) to this: BeautifulSoup([your markup], "lxml") 解决未设置默认解析器的错误
    Python 3.x 中"HTTP Error 403: Forbidden"问题的解决方案
    继承习题
    继承
  • 原文地址:https://www.cnblogs.com/gogowin/p/6600905.html
Copyright © 2020-2023  润新知