Description
Given a positive integer X, an X-factor chain of length m is a sequence of integers,
1 = X0, X1, X2, …, Xm= X
satisfying
Xi < Xi+1 and Xi | Xi+1 where a | b means a perfectly divides into b.
Now we are interested in the maximum length of X-factor chains and the number of chains of such length.
Input
The input consists of several test cases. Each contains a positive integer X (X ≤ 220).
Output
For each test case, output the maximum length and the number of such X-factors chains.
Sample Input
2 3 4 10 100
Sample Output
1 1 1 1 2 1 2 2 4 6
题意:给定一个正整数 X,求满足1 < X1 < X2 < ... < Xm-1 < X且前一个数可以整除相邻的后一个数的最大m和这种情况下方法数。
题解:第一个想到的是深搜,枚举X因子,然后对除以因子后的数DFS,想想也会超时。。。然后往数学方面想,参考了大牛的博客后才恍然大悟。首先对X分解质因数,设X = a1^q1 * a2^q2 * ... * an^qn,那么最长的数链肯定是每次从n个质因子中取一个数,然后累乘到前一个数上面,所以最大的m就是q1+q2+...+qn。方法数就是每次取的不同取法数,因为每个质因子都有重复,所以答案为质因子个数之和的全排列,再除以每个质因子个数的全排列。
#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include <map>
#include <vector>
#include <list>
#include <set>
#include <stack>
#include <queue>
#include <deque>
#include <algorithm>
#include <functional>
#include <numeric>
#include <iomanip>
#include <limits>
#include <new>
#include <utility>
#include <iterator>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long ll;
ll fact[18] = {1};
vector<int> div(int x)
{
vector<int> pow;
for (int i = 2; i * i <= x; ++i)
{
int cnt = 0;
while (x % i == 0)
{
x /= i;
cnt++;
}
pow.push_back(cnt);
}
if (x != 1)
pow.push_back(1);
return pow;
}
int main()
{
for (int i = 1; i < 18; ++i)
fact[i] = i * fact[i-1];
int x;
while (~scanf("%d", &x))
{
vector<int> pow = div(x);
ll sump = accumulate(pow.begin(), pow.end(), 0);
ll mulp = 1;
for (vector<int>::iterator it = pow.begin(); it != pow.end(); ++it)
mulp *= fact[*it];
printf("%lld %lld
", sump, fact[sump]/mulp);
}
return 0;
}