• hashCode和identityHashCode底层是怎么生成的


          前言:在工作中使用==埋下的坑这篇博文的最后,我想到了两个问题,其中一个是——为什么 int int1=99;int int2=99;int1和int2的identityHashCode是一样的哪?为什么float float1=99;float float2=99;float1和float2的identityHashCode是不一样的哪?那就需要了解identityHashCode的生成规则了,需要了解一下java的内存地址分配规则了。

             今天的事情不多,我就查了查资料,找到了对应的底层实现的方式,并且也验证了hashCode和identityHashCode 的关系这篇博文中的部分观点。

    本文将根据openJDK 6源码,向你展示Java语言中的Object对象的hashCode() 方法和System对象的identityHashCode()方法的底层实现的神秘面纱,我将一步一步地向你介绍Java Object对象的hashCode() 方法和System对象的identityHashCode()方法到底底层调用了什么函数。为了更好地了解这个过程,你可以自己下载openJDK 6 源码,亲自查看和跟踪源码,了解Object对象的hashCode() 方法和System对象的identityHashCode()方法的生成过程:

    openJDK 6 下载地址:http://download.java.net/openjdk/jdk6/

    1:java.lang.System.java类的identityHashCode()方法如下所示——在 openjdk-6-src-b27-26_oct_2012jdksrcshareclassesjavalang 目录下,它是一个静态的本地方法

        /**
         * Returns the same hash code for the given object as
         * would be returned by the default method hashCode(),
         * whether or not the given object's class overrides
         * hashCode().
         * The hash code for the null reference is zero.
         *
         * @param x object for which the hashCode is to be calculated
         * @return  the hashCode
         * @since   JDK1.1
         */
        public static native int identityHashCode(Object x);

    2:java.lang.System.java类的identityHashCode()方法的本地c语言的实现——System.c——在 openjdk-6-src-b27-26_oct_2012jdksrcshare ativejavalang 目录下,他调用的是JVM_IHashCode()方法

    JNIEXPORT jint JNICALL
    Java_java_lang_System_identityHashCode(JNIEnv *env, jobject this, jobject x)
    {
        return JVM_IHashCode(env, x);
    }

    3:JVM_IHashCode()方法在 openjdk-6-src-b27-26_oct_2012hotspotsrcsharevmprimsjvm.cpp文件中,它又调用ObjectSynchronizer::FastHashCode()方法

    // java.lang.Object ///////////////////////////////////////////////
    
    
    JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
      JVMWrapper("JVM_IHashCode");
      // as implemented in the classic virtual machine; return 0 if object is NULL
      return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
    JVM_END

    4:ObjectSynchronizer::FastHashCode()方法在 openjdk-6-src-b27-26_oct_2012hotspotsrcsharevm untimesynchronizer.cpp文件中,它是最终实现hashCode()和identityHashCode()方法的方法,核心的实现代码如下,我们从这里也可以看得到,还是比较复杂的,并不是简单取一个对象的引用地址那么简单。

    //
    intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
      if (UseBiasedLocking) {
        // NOTE: many places throughout the JVM do not expect a safepoint
        // to be taken here, in particular most operations on perm gen
        // objects. However, we only ever bias Java instances and all of
        // the call sites of identity_hash that might revoke biases have
        // been checked to make sure they can handle a safepoint. The
        // added check of the bias pattern is to avoid useless calls to
        // thread-local storage.
        if (obj->mark()->has_bias_pattern()) {
          // Box and unbox the raw reference just in case we cause a STW safepoint.
          Handle hobj (Self, obj) ;
          // Relaxing assertion for bug 6320749.
          assert (Universe::verify_in_progress() ||
                  !SafepointSynchronize::is_at_safepoint(),
                 "biases should not be seen by VM thread here");
          BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
          obj = hobj() ;
          assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
        }
      }
    
      // hashCode() is a heap mutator ...
      // Relaxing assertion for bug 6320749.
      assert (Universe::verify_in_progress() ||
              !SafepointSynchronize::is_at_safepoint(), "invariant") ;
      assert (Universe::verify_in_progress() ||
              Self->is_Java_thread() , "invariant") ;
      assert (Universe::verify_in_progress() ||
             ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
    
      ObjectMonitor* monitor = NULL;
      markOop temp, test;
      intptr_t hash;
      markOop mark = ReadStableMark (obj);
    
      // object should remain ineligible for biased locking
      assert (!mark->has_bias_pattern(), "invariant") ;
    
      if (mark->is_neutral()) {
        hash = mark->hash();              // this is a normal header
        if (hash) {                       // if it has hash, just return it
          return hash;
        }
        hash = get_next_hash(Self, obj);  // allocate a new hash code
        temp = mark->copy_set_hash(hash); // merge the hash code into header
        // use (machine word version) atomic operation to install the hash
        test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
        if (test == mark) {
          return hash;
        }
        // If atomic operation failed, we must inflate the header
        // into heavy weight monitor. We could add more code here
        // for fast path, but it does not worth the complexity.
      } else if (mark->has_monitor()) {
        monitor = mark->monitor();
        temp = monitor->header();
        assert (temp->is_neutral(), "invariant") ;
        hash = temp->hash();
        if (hash) {
          return hash;
        }
        // Skip to the following code to reduce code size
      } else if (Self->is_lock_owned((address)mark->locker())) {
        temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
        assert (temp->is_neutral(), "invariant") ;
        hash = temp->hash();              // by current thread, check if the displaced
        if (hash) {                       // header contains hash code
          return hash;
        }
        // WARNING:
        //   The displaced header is strictly immutable.
        // It can NOT be changed in ANY cases. So we have
        // to inflate the header into heavyweight monitor
        // even the current thread owns the lock. The reason
        // is the BasicLock (stack slot) will be asynchronously
        // read by other threads during the inflate() function.
        // Any change to stack may not propagate to other threads
        // correctly.
      }
    
      // Inflate the monitor to set hash code
      monitor = ObjectSynchronizer::inflate(Self, obj);
      // Load displaced header and check it has hash code
      mark = monitor->header();
      assert (mark->is_neutral(), "invariant") ;
      hash = mark->hash();
      if (hash == 0) {
        hash = get_next_hash(Self, obj);
        temp = mark->copy_set_hash(hash); // merge hash code into header
        assert (temp->is_neutral(), "invariant") ;
        test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
        if (test != mark) {
          // The only update to the header in the monitor (outside GC)
          // is install the hash code. If someone add new usage of
          // displaced header, please update this code
          hash = test->hash();
          assert (test->is_neutral(), "invariant") ;
          assert (hash != 0, "Trivial unexpected object/monitor header usage.");
        }
      }
      // We finally get the hash
      return hash;
    }

    5:java.lang.Object.java类的hashCode()方法如下所示——在 openjdk-6-src-b27-26_oct_2012jdksrcshareclassesjavalang 目录下,它是一个本地方法

        /**
         * Returns a hash code value for the object. This method is
         * supported for the benefit of hashtables such as those provided by
         * <code>java.util.Hashtable</code>.
         * <p>
         * The general contract of <code>hashCode</code> is:
         * <ul>
         * <li>Whenever it is invoked on the same object more than once during
         *     an execution of a Java application, the <tt>hashCode</tt> method
         *     must consistently return the same integer, provided no information
         *     used in <tt>equals</tt> comparisons on the object is modified.
         *     This integer need not remain consistent from one execution of an
         *     application to another execution of the same application.
         * <li>If two objects are equal according to the <tt>equals(Object)</tt>
         *     method, then calling the <code>hashCode</code> method on each of
         *     the two objects must produce the same integer result.
         * <li>It is <em>not</em> required that if two objects are unequal
         *     according to the {@link java.lang.Object#equals(java.lang.Object)}
         *     method, then calling the <tt>hashCode</tt> method on each of the
         *     two objects must produce distinct integer results.  However, the
         *     programmer should be aware that producing distinct integer results
         *     for unequal objects may improve the performance of hashtables.
         * </ul>
         * <p>
         * As much as is reasonably practical, the hashCode method defined by
         * class <tt>Object</tt> does return distinct integers for distinct
         * objects. (This is typically implemented by converting the internal
         * address of the object into an integer, but this implementation
         * technique is not required by the
         * Java<font size="-2"><sup>TM</sup></font> programming language.)
         *
         * @return  a hash code value for this object.
         * @see     java.lang.Object#equals(java.lang.Object)
         * @see     java.util.Hashtable
         */
        public native int hashCode();

    6:java.lang.Object.java类的hashCode()方法的本地c语言的实现——Object.c——在 openjdk-6-src-b27-26_oct_2012jdksrcshare ativejavalang 目录下,他调用的也是JVM_IHashCode()方法,由此可见我们在hashCode和identityHashCode 的关系中的观点,在此处也得到了再次的验证

    static JNINativeMethod methods[] = {
        {"hashCode",    "()I",                    (void *)&JVM_IHashCode},
        {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
        {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
        {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
        {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
    };

     7:如上所示,经过一步步的分析,我们已经了解到了 hashCode和identityHashCode底层到底是怎么生成的,不过有些事情这里要在下面补充一下

    7-1:本地方法是什么东西?

    本地方法是指用本地程序设计语言,比如:c或者c++,来编写的特殊方法。在java语言中通过native关键字来修饰,通过Java Native Interface(JNI)技术来支持java应用程序来调用本地方法。

    7-2:本地方法的特点是什么?

    本地方法在本地语言中可以执行任意的计算任务,并返回到java程序设计语言中。

    7-3:本地方法的用途是有哪些?

    从历史上看本地方法主要有三种用途。

    1)提供“访问特定于平台的机制”的能力,比如:访问注册表和文件锁。

    2)提供访问遗留代码库的能力,从而可以访问遗留数据。

    3)可以通过本地语言,编写应用程序中注重性能的部分,以提高系统的性能。

    7-4:使用本地方法的优缺点是什么?

    总体来讲使用本地方需要格外的谨慎,因为本地代码中的一个bug就有可能破坏掉整个应用程序。

    使用本地代码的优点是:提高系统性能,访问特定于平台的机制。

    使用本地代码的缺点是:

    1)因为本地语言是不安全的,所以,使用本地方法的应用程序也不能免受内存毁坏错误的影响。

    2)因为本地语言是与平台相关的,使用本地方法的应用程序也不再是可自由移植的。

    3)使用本地方法的应用程序更难调试

    4)在进入和退出本地代码时,需要相关的固定开销,所以,如果本地代码时做的少量的工作,本地方法就可能降低性能。

    5)需要“胶合代码”的本地方法编写起来的单调乏味,并且难以阅读。

    8:参考

    Java语言中Object对象的hashCode()取值的底层算法是怎样实现的?

    Effective Java 中文第二版

  • 相关阅读:
    双链表( 初始化,建立,插入,查找,删除 )
    单链表(程序员宝典)
    单链表(建立、插入、删除、打印)
    Hive- 表
    Spark- 性能优化
    Spark- Checkpoint原理剖析
    Spark- 优化后的 shuffle 操作原理剖析
    Spark- Spark普通Shuffle操作的原理剖析
    Spark- Spark内核架构原理和Spark架构深度剖析
    Spark- Spark基本工作原理
  • 原文地址:https://www.cnblogs.com/godtrue/p/6395098.html
Copyright © 2020-2023  润新知