Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .
For each input file, your program has to write the number quadruplets whose sum is zero.
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5
HintSample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题意为从给出的四列数中,每列选出一个数,可以重复选,问有多少组这四个数相加结果等于0。
每列的个数最多四千 ,暴力4000^4,一定超时的。我们中的巨巨想到一个办法。先将数组预处理下两个两个合并,前两个合并,后两个合并。这样新生成的两个数组,第一个为前两列各个数字的和,第二个为后两列各个数字的和。这样的复杂度为O(n^2),16000000,这样不会超时,接下来遍历其中一个数组,二分另外一个数组,如果遍历的那个数组元素的相反数等于,在另外的一个数组中二分找到了,ans++;
这个思路是很厉害的,可是交上去一直wa,我们各种改还是不对,比赛结束后才想到,万一二分的那个数组中要查找的数出现了多次怎么办!漏洞就在这,把查找到的那个数在向两边搜下看有没有相等的就好了,注意break;我在这超时了两发~~~~~
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 4005;
const int maxnn = 16000000+25;
int a[maxn],b[maxn],c[maxn],d[maxn],ab[maxnn],cd[maxnn];
int n,m,k;
int s_division(int x){
int l,r,mid,ans;
l = 0; r = m-1; mid = ans = 0;
while(l<=r){
mid=(l+r)>>1;
if(cd[mid]==x){
ans++;
for(int j=mid+1;j<m;j++){
if(cd[mid]==cd[j])
ans++;
else break;
}
for(int j=mid-1;j>=0;j--){
if(cd[mid]==cd[j])
ans++;
else break;
}
return ans;
}
if(cd[mid]<x)
l=mid+1;
if(cd[mid]>x)
r=mid-1;
}
return ans;
}
int main(){
int n,sum;
while(scanf("%d",&n)==1){
sum = 0;k = m = 0;
for(int i=0;i<n;i++){
scanf("%d %d %d %d",&a[i],&b[i],&c[i],&d[i]);
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
ab[k++]=a[i]+b[j];
}
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
cd[m++]=c[i]+d[j];
}
}
sort(cd,cd+m);
for(int i=0;i<k;i++){
sum+=s_division(-1*ab[i]);
}
printf("%d
",sum);
}
return 0;
}