• [模板] 多项式工业


    FFT

    #include<bits/stdc++.h>
    
    using namespace std;
    
    const double PI = acos(-1);
    const int MAXN = 2000006;
    
    int rd(){
      int ret=0, f=1;char c;
      while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
      while(isdigit(c))ret=ret*10+c-'0',c=getchar();
      return ret*f;
    }
    
    int n,m;
    
    struct CP{
      CP(double xx=0,double yy=0){x=xx;y=yy;}
      double x,y;
      CP operator + (CP const &B) const {return CP(x+B.x,y+B.y);}
      CP operator - (CP const &B) const {return CP(x-B.x,y-B.y);}
      CP operator * (CP const &B) const {return CP(x*B.x-y*B.y,x*B.y+y*B.x);}
    }f[MAXN<<1],g[MAXN<<1];
    int tr[MAXN<<1];
    void FFT(CP *f,bool op){
      for(int i=0;i<n;i++)
        if(i<tr[i]) swap(f[i],f[tr[i]]);
      for(int p=2;p<=n;p<<=1){
        int len=p>>1;
        CP tG=CP{cos(2*PI/p),sin(2*PI/p)};
        if(!op)tG.y*=-1;
        for(int k=0;k<n;k+=p){
          CP buf=CP{1,0};
          for(int l=k;l<k+len;l++){
            CP tt=buf*f[len+l];
            f[len+l]=f[l]-tt;
            f[l]=f[l]+tt;
            buf=buf*tG;
          }
        }
      }
    }
    
    int main(){
      n=rd();m=rd();
      for(int i=0;i<=n;i++)scanf("%lf",&f[i].x);
      for(int i=0;i<=m;i++)scanf("%lf",&g[i].x);
      for(m+=n,n=1;n<=m;n<<=1);
      for(int i=0;i<n;i++)
        tr[i]=(tr[i>>1]>>1)|((i&1)?n>>1:0);
      FFT(f,1);
      FFT(g,1);
      for(int i=0;i<n;i++) f[i]=f[i]*g[i];
      FFT(f,0);
      for(int i=0;i<=m;i++)
        printf("%d ",(int)(f[i].x/n+0.5));
      return 0;
    }
    

    NTT

    #include <bits/stdc++.h>
    
    using namespace std;
    
    int rd() {
      int ret = 0, f = 1;char c;
      while (c = getchar(), !isdigit(c))f = c == '-' ? -1 : 1;
      while (isdigit(c))ret = ret * 10 + c - '0', c = getchar();
      return ret * f;
    }
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    const int MAXN = 200005;
    const int MOD = 998244353, _G = 3;
    
    int limit, r[MAXN << 2];
    
    ll qpow(ll a, ll b = MOD - 2) {
      ll ans = 1;
      while (b) {
        if (b & 1) {
          ans = ans * a % MOD;
        }
        a = a * a % MOD;
        b >>= 1;
      }
      return ans;
    }
    int bec;
    const int invG = qpow(_G);
    
    void NTT(int *g, bool op) {
      int n = limit;
      static unsigned long long f[MAXN << 1], w[MAXN << 1];
      for (int i = 0; i < n; i++)
        w[i] = 1;
      for (int i = 0; i < n; i++)
        f[i] = g[r[i]];
    
      for (int l = 1; l < n; l <<= 1) {
        ull tG = qpow(op ? _G : invG, (MOD - 1) / (l + l));
        for (int i = 1; i < l; i++)
          w[i] = w[i - 1] * tG % MOD;
        for (int k = 0; k < n; k += l + l) {
          for (int p = 0; p < l; p++) {
            int tt = w[p] * f[k | l | p] % MOD;
            f[k | l | p] = f[k | p] + MOD - tt;
            f[k | p] += tt;
          }
        }
    
        if (l == (1 << 17))
          for (int i = 0; i < n; i++)
            f[i] %= MOD;
      }
      if (!op) {
        ull invn = qpow(n);
        for (int i = 0; i < n; i++)
          g[i] = f[i] % MOD * invn % MOD;
      } else {
        for (int i = 0; i < n; i++)
          g[i] = f[i] % MOD;
      }
    }
    
    void init(int n) {
      limit = 1;
      while (limit <= n)
        limit <<= 1;
      for (int i = 1; i < limit; i++)
        r[i] = r[i >> 1] >> 1 | ((i & 1) ? limit >> 1 : 0);
    }
    
    
    int MTT(int *a, int *b, int n, int m, int *res) {
      static int tmpa[MAXN], tmpb[MAXN];
      for (int i = 0; i < n; i++)
        tmpa[i] = a[i];
      for (int i = 0; i < m; i++)//less
        tmpb[i] = b[i];
      init(n + m);
      NTT(tmpa, 1);
      NTT(tmpb, 1);
      for (int i = 0; i < limit; i++)
        res[i] = 1ll * tmpa[i] * tmpb[i] % MOD;
      NTT(res, 0);
    
      return n + m - 1;
    }
    
    int B[MAXN * 4], tot;
    
    struct P {
      int *a, len, len2;
      void init(int _len, int input = 1) {
        len = _len;
        a = B + tot;
        if (input)
          for (int i = 0; i < _len; i++)
            cin >> a[i];
        tot += len;
      }
    };
    
    P mul(const P &lhs, const P &rhs) {
      P ret;
      ret.init(lhs.len + rhs.len - 1, 0);
      MTT(lhs.a, rhs.a, lhs.len, rhs.len, ret.a);
      return ret;
    }
    
    int n, m;
    
    void work() {
      cin >> n >> m;
      P a, b;
      a.init(n + 1);
      b.init(m + 1);
      P ans = mul(a, b);
      for (int i = 0; i < ans.len; i++)
        cout << ans.a[i] << " ";
    }
    
    int main() {
      work();
    }
    
    

    MTT/任意模数NTT

    #include<bits/stdc++.h>
    
    using namespace std;
    
    int rd(){
      int ret=0,f=1;char c;
      while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
      while(isdigit(c))ret=ret*10+c-'0',c=getchar();
      return ret*f;
    }
    
    typedef long long ll;
    
    const int inf = 1<<30;
    const int MAXN = 100005;
    //const int MOD = 998244353;
    int MOD;
    const int BASE = 1 << 15;
    const long double Pi = acos(-1.0);
    
    struct CP {
      long double x, y;
      CP (long double xx = 0, long double yy = 0) {
        x = xx, y = yy;
      }
    } P1[MAXN << 2], P2[MAXN << 2], Q[MAXN << 2];
    
    CP operator + (CP a, CP b) {
      return CP(a.x + b.x, a.y + b.y);
    }
    
    CP operator - (CP a, CP b) {
      return CP(a.x - b.x, a.y - b.y);
    }
    
    CP operator * (CP a, CP b) {
      return CP(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
    }
    int limit, r[MAXN << 2];
    
    ll qpow(ll a, ll b) {
      ll ans = 1;
      while (b) {
        if (b & 1) {
          ans = ans * a % MOD;
        }
        a = a * a % MOD;
        b >>= 1;
      }
      return ans;
    }
    
    void FFT(CP *A, int type) {
      for (int i = 0; i < limit; i++)
        if (i < r[i])
          swap(A[i], A[r[i]]);
      for (int mid = 1; mid < limit; mid <<= 1) {
        CP Wn( cos(Pi / mid), type * sin(Pi / mid) );
        for (int R = mid << 1, j = 0; j < limit; j += R) {
          CP w(1, 0);
          for (int k = 0; k < mid; k++, w = w * Wn) {
            CP x = A[j + k], y = w * A[j + mid + k];
            A[j + k] = x + y;
            A[j + mid + k] = x - y;
          }
        }
      }
    }
    
    void init(int n) {
      limit = 1;
      while (limit <= n)
        limit <<= 1;
      for (int i = 1; i < limit; i++)
        r[i] = r[i >> 1] >> 1 | ((i & 1) ? limit >> 1 : 0);
    }
    
    int MTT(int *a, int *b, int n, int m, int *res, int MOD) {
      init(n + m);
      for (int i = 0; i < n; i++) {
        P1[i] = {a[i] / BASE, a[i] % BASE};
        P2[i] = {a[i] / BASE, -a[i] % BASE};
      }
      for (int i = n; i < limit; i++) {
        P1[i] = {0, 0}, P2[i] = {0, 0};
      }
      for (int i = 0; i < m; i++) {
        Q[i] = {b[i] / BASE, b[i] % BASE};
      }
      for (int i = m; i < limit; i++) {
        Q[i] = {0, 0};
      }
      FFT(P1, 1), FFT(P2, 1), FFT(Q, 1);
      for (int i = 0; i < limit; i++) {
        Q[i].x /= limit, Q[i].y /= limit;
        P1[i] = P1[i] * Q[i], P2[i] = P2[i] * Q[i];
      }
      FFT(P1, -1), FFT(P2, -1);
      for (int i = 0; i < n + m - 1; i++) {
        long long a1b1, a1b2, a2b1, a2b2;
        a1b1 = (long long)floor((P1[i].x + P2[i].x) / 2 + 0.5) % MOD;
        a1b2 = (long long)floor((P1[i].y + P2[i].y) / 2 + 0.5) % MOD;
        a2b1 = (long long)floor((P1[i].y - P2[i].y) / 2 + 0.5) % MOD;
        a2b2 = (long long)floor((P2[i].x - P1[i].x) / 2 + 0.5) % MOD;
        res[i] = ((a1b1 * BASE + (a1b2 + a2b1)) * BASE + a2b2) % MOD;
        res[i] = (res[i] + MOD) % MOD;
      }
      return n + m - 1;
    }
    
    int B[MAXN*8],tot;
    
    struct P{
      int *a,len;
      void init(int _len){
        len=_len;
        a=B+tot;
        for(int i=0;i<len;i++)
          a[i]=rd();
        tot+=len;
      }
      void mul(const P& rhs){
        len=MTT(a,rhs.a,len,rhs.len,a,MOD);
      }
    };
    
    int n,m;
    
    int main(){
      n=rd();m=rd();MOD=rd();
      P x,y;
      x.init(n+1);
      y.init(m+1);
      x.mul(y);
      for(int i=0;i<x.len;i++){
        printf("%d ",x.a[i]);
      }
    }
    
    

    FWT

    #include<bits/stdc++.h>
    
    using namespace std;
    
    int rd(){
      int ret=0,f=1;char c;
      while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
      while(isdigit(c))ret=ret*10+c-'0',c=getchar();
      return ret*f;
    }
    
    typedef long long ll;
    const int MOD = 998244353,INV2=499122177;
    const ll
    Cor[2][2]={{1,0},{1,1}},
    Cand[2][2]={{1,1},{0,1}},
    Cxor[2][2]={{1,1},{1,MOD-1}},
    ICor[2][2]={{1,0},{MOD-1,1}},
    ICand[2][2]={{1,MOD-1},{0,1}},
    ICxor[2][2]={{INV2,INV2},{INV2,MOD-INV2}};
    
    void FWT(ll *f,const ll c[2][2],int n){
      for(int len=1;len<n;len<<=1)
        for(int p=0;p<n;p+=len+len)
          for(int i=p;i<p+len;i++){
            ll sav=f[i];
            f[i]=(c[0][0]*f[i]+c[0][1]*f[i+len])%MOD;
            f[i+len]=(c[1][0]*sav+c[1][1]*f[i+len])%MOD;
          }
    }
    
    void bitmul(ll *f,ll *g,const ll c[2][2],const ll ic[2][2],int n){
      FWT(f,c,n);FWT(g,c,n);
      for(int i=0;i<n;i++) f[i]=f[i]*g[i]%MOD;
      FWT(f,ic,n);
    }
    
    void print(ll *x,int n){
      for(int i=0;i<n;i++)
        printf("%lld ",x[i]);
      putchar('
    ');
    }
    
    const int MAXN = 2000006;
    #define cpy(f,g,n) memcpy(f,g,sizeof(ll)*(n))
    ll f[MAXN],g[MAXN],savf[MAXN],savg[MAXN];
    int main(){
      int n=(1<<rd());
      for(int i=0;i<n;i++)f[i]=rd();
      for(int i=0;i<n;i++)g[i]=rd();
      cpy(savf,f,n);cpy(savg,g,n);
      bitmul(f,g,Cor,ICor,n);
      print(f,n);
      cpy(f,savf,n);cpy(g,savg,n);
      bitmul(f,g,Cand,ICand,n);
      print(f,n);
      cpy(f,savf,n);cpy(g,savg,n);
      bitmul(f,g,Cxor,ICxor,n);
      print(f,n);
      return 0;
    }
    

    本文来自博客园,作者:GhostCai,转载请注明原文链接:https://www.cnblogs.com/ghostcai/p/15099655.html

  • 相关阅读:
    在JS中如何去掉千分号
    JS中showModalDialog详细使用
    js里的insertCell和appendChild的区别
    js showModalDialog
    js中innerHTML,innerText,outerHTML的用法和区别
    MYSQL入门指导
    对拍程序C语言实现
    人性的弱点
    POJ3207(2SAT)
    期末考试时间安排
  • 原文地址:https://www.cnblogs.com/ghostcai/p/15099655.html
Copyright © 2020-2023  润新知