• DES加密和解密PHP,Java,ObjectC统一的方法


    PHP的加解密函数

    <?php
    
    class DesComponent {
    	var $key = '12345678';
    
    	function encrypt($string) {
    
    		$ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF);
    		$iv=null;
    		foreach ($ivArray as $element)
    			$iv.=CHR($element);
    
    
     		$size = mcrypt_get_block_size ( MCRYPT_DES, MCRYPT_MODE_CBC );  
           $string = $this->pkcs5Pad ( $string, $size );  
    
    		$data =  mcrypt_encrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv);
    
    		$data = base64_encode($data);
    		return $data;
    	}
    
    	function decrypt($string) {
    
    		$ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF);
    		$iv=null;
    		foreach ($ivArray as $element)
    			$iv.=CHR($element);
    
    		$string = base64_decode($string);
    		//echo("****");
    		//echo($string);
    		//echo("****");
    		$result =  mcrypt_decrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv);
       $result = $this->pkcs5Unpad( $result );  
    
    		return $result;
    	}
    	
    	
    	 function pkcs5Pad($text, $blocksize)  
        {  
            $pad = $blocksize - (strlen ( $text ) % $blocksize);  
            return $text . str_repeat ( chr ( $pad ), $pad );  
        }  
      
        function pkcs5Unpad($text)  
        {  
            $pad = ord ( $text {strlen ( $text ) - 1} );  
            if ($pad > strlen ( $text ))  
                return false;  
            if (strspn ( $text, chr ( $pad ), strlen ( $text ) - $pad ) != $pad)  
                return false;  
            return substr ( $text, 0, - 1 * $pad );  
        }  
    	
    }
    
    
    $des = new DesComponent();
    echo ($des->encrypt("19760519"));
    echo "<br />";
    
    //die($des->decrypt("zLVdpYUM0qw="));
    //die($des->decrypt("zLVdpYUM0qzEsNshEEI6Cg=="));
    
    $t2 =$des->decrypt("zLVdpYUM0qw="); 
    echo $t2;
    echo "--";
    echo strlen($t2);
    echo is_utf8($t2);
    
    
    echo "<br />";
    $t3 = mb_convert_encoding($t2,"GB2312", "utf-8");
    echo $t3;
    echo "--";
    echo strlen($t3);
    echo is_utf8($t3);
    
    
    echo "<br />";
    
    
    $t1 =$des->decrypt("zLVdpYUM0qzEsNshEEI6Cg=="); 
    echo $t1;
    echo "--";
    echo strlen($t1);
    echo is_utf8($t1);
    
    echo "<br />";
    $t3 = mb_convert_encoding($t1, "utf-8","GB2312");
    echo $t3;
    echo "--";
    echo strlen($t3);
    echo is_utf8($t3);
    
    function is_utf8($string) { 
    return preg_match('%^(?: 
    [\x09\x0A\x0D\x20-\x7E] # ASCII 
    | [\xC2-\xDF][\x80-\xBF] # non-overlong 2-byte 
    | \xE0[\xA0-\xBF][\x80-\xBF] # excluding overlongs 
    | [\xE1-\xEC\xEE\xEF][\x80-\xBF]{2} # straight 3-byte 
    | \xED[\x80-\x9F][\x80-\xBF] # excluding surrogates 
    | \xF0[\x90-\xBF][\x80-\xBF]{2} # planes 1-3 
    | [\xF1-\xF3][\x80-\xBF]{3} # planes 4-15 
    | \xF4[\x80-\x8F][\x80-\xBF]{2} # plane 16 
    )*$%xs', $string); 
    }
    ?>

    Java的加解密函数

    package ghj1976.Demo;
    
    
    /*
     * Copyright (C) 2010 The Android Open Source Project
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     *      http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
     
    import java.io.UnsupportedEncodingException;
     
    /**
     * Utilities for encoding and decoding the Base64 representation of
     * binary data.  See RFCs <a
     * href="http://www.ietf.org/rfc/rfc2045.txt">2045</a> and <a
     * href="http://www.ietf.org/rfc/rfc3548.txt">3548</a>.
     */
    public class Base64 {
        /**
         * Default values for encoder/decoder flags.
         */
        public static final int DEFAULT = 0;
     
        /**
         * Encoder flag bit to omit the padding '=' characters at the end
         * of the output (if any).
         */
        public static final int NO_PADDING = 1;
     
        /**
         * Encoder flag bit to omit all line terminators (i.e., the output
         * will be on one long line).
         */
        public static final int NO_WRAP = 2;
     
        /**
         * Encoder flag bit to indicate lines should be terminated with a
         * CRLF pair instead of just an LF.  Has no effect if {@code
         * NO_WRAP} is specified as well.
         */
        public static final int CRLF = 4;
     
        /**
         * Encoder/decoder flag bit to indicate using the "URL and
         * filename safe" variant of Base64 (see RFC 3548 section 4) where
         * {@code -} and {@code _} are used in place of {@code +} and
         * {@code /}.
         */
        public static final int URL_SAFE = 8;
     
        /**
         * Flag to pass to {@link Base64OutputStream} to indicate that it
         * should not close the output stream it is wrapping when it
         * itself is closed.
         */
        public static final int NO_CLOSE = 16;
     
        //  --------------------------------------------------------
        //  shared code
        //  --------------------------------------------------------
     
        /* package */ static abstract class Coder {
            public byte[] output;
            public int op;
     
            /**
             * Encode/decode another block of input data.  this.output is
             * provided by the caller, and must be big enough to hold all
             * the coded data.  On exit, this.opwill be set to the length
             * of the coded data.
             *
             * @param finish true if this is the final call to process for
             *        this object.  Will finalize the coder state and
             *        include any final bytes in the output.
             *
             * @return true if the input so far is good; false if some
             *         error has been detected in the input stream..
             */
            public abstract boolean process(byte[] input, int offset, int len, boolean finish);
     
            /**
             * @return the maximum number of bytes a call to process()
             * could produce for the given number of input bytes.  This may
             * be an overestimate.
             */
            public abstract int maxOutputSize(int len);
        }
     
        //  --------------------------------------------------------
        //  decoding
        //  --------------------------------------------------------
     
        /**
         * Decode the Base64-encoded data in input and return the data in
         * a new byte array.
         *
         * <p>The padding '=' characters at the end are considered optional, but
         * if any are present, there must be the correct number of them.
         *
         * @param str    the input String to decode, which is converted to
         *               bytes using the default charset
         * @param flags  controls certain features of the decoded output.
         *               Pass {@code DEFAULT} to decode standard Base64.
         *
         * @throws IllegalArgumentException if the input contains
         * incorrect padding
         */
        public static byte[] decode(String str, int flags) {
            return decode(str.getBytes(), flags);
        }
     
        /**
         * Decode the Base64-encoded data in input and return the data in
         * a new byte array.
         *
         * <p>The padding '=' characters at the end are considered optional, but
         * if any are present, there must be the correct number of them.
         *
         * @param input the input array to decode
         * @param flags  controls certain features of the decoded output.
         *               Pass {@code DEFAULT} to decode standard Base64.
         *
         * @throws IllegalArgumentException if the input contains
         * incorrect padding
         */
        public static byte[] decode(byte[] input, int flags) {
            return decode(input, 0, input.length, flags);
        }
     
        /**
         * Decode the Base64-encoded data in input and return the data in
         * a new byte array.
         *
         * <p>The padding '=' characters at the end are considered optional, but
         * if any are present, there must be the correct number of them.
         *
         * @param input  the data to decode
         * @param offset the position within the input array at which to start
         * @param len    the number of bytes of input to decode
         * @param flags  controls certain features of the decoded output.
         *               Pass {@code DEFAULT} to decode standard Base64.
         *
         * @throws IllegalArgumentException if the input contains
         * incorrect padding
         */
        public static byte[] decode(byte[] input, int offset, int len, int flags) {
            // Allocate space for the most data the input could represent.
            // (It could contain less if it contains whitespace, etc.)
            Decoder decoder = new Decoder(flags, new byte[len*3/4]);
     
            if (!decoder.process(input, offset, len, true)) {
                throw new IllegalArgumentException("bad base-64");
            }
     
            // Maybe we got lucky and allocated exactly enough output space.
            if (decoder.op == decoder.output.length) {
                return decoder.output;
            }
     
            // Need to shorten the array, so allocate a new one of the
            // right size and copy.
            byte[] temp = new byte[decoder.op];
            System.arraycopy(decoder.output, 0, temp, 0, decoder.op);
            return temp;
        }
     
        /* package */ static class Decoder extends Coder {
            /**
             * Lookup table for turning bytes into their position in the
             * Base64 alphabet.
             */
            private static final int DECODE[] = {
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63,
                52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
                -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
                15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1,
                -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
                41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            };
     
            /**
             * Decode lookup table for the "web safe" variant (RFC 3548
             * sec. 4) where - and _ replace + and /.
             */
            private static final int DECODE_WEBSAFE[] = {
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1,
                52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
                -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
                15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63,
                -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
                41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            };
     
            /** Non-data values in the DECODE arrays. */
            private static final int SKIP = -1;
            private static final int EQUALS = -2;
     
            /**
             * States 0-3 are reading through the next input tuple.
             * State 4 is having read one '=' and expecting exactly
             * one more.
             * State 5 is expecting no more data or padding characters
             * in the input.
             * State 6 is the error state; an error has been detected
             * in the input and no future input can "fix" it.
             */
            private int state;   // state number (0 to 6)
            private int value;
     
            final private int[] alphabet;
     
            public Decoder(int flags, byte[] output) {
                this.output = output;
     
                alphabet = ((flags & URL_SAFE) == 0) ? DECODE : DECODE_WEBSAFE;
                state = 0;
                value = 0;
            }
     
            /**
             * @return an overestimate for the number of bytes {@code
             * len} bytes could decode to.
             */
            public int maxOutputSize(int len) {
                return len * 3/4 + 10;
            }
     
            /**
             * Decode another block of input data.
             *
             * @return true if the state machine is still healthy.  false if
             *         bad base-64 data has been detected in the input stream.
             */
            public boolean process(byte[] input, int offset, int len, boolean finish) {
                if (this.state == 6) return false;
     
                int p = offset;
                len += offset;
     
                // Using local variables makes the decoder about 12%
                // faster than if we manipulate the member variables in
                // the loop.  (Even alphabet makes a measurable
                // difference, which is somewhat surprising to me since
                // the member variable is final.)
                int state = this.state;
                int value = this.value;
                int op = 0;
                final byte[] output = this.output;
                final int[] alphabet = this.alphabet;
     
                while (p < len) {
                    // Try the fast path:  we're starting a new tuple and the
                    // next four bytes of the input stream are all data
                    // bytes.  This corresponds to going through states
                    // 0-1-2-3-0.  We expect to use this method for most of
                    // the data.
                    //
                    // If any of the next four bytes of input are non-data
                    // (whitespace, etc.), value will end up negative.  (All
                    // the non-data values in decode are small negative
                    // numbers, so shifting any of them up and or'ing them
                    // together will result in a value with its top bit set.)
                    //
                    // You can remove this whole block and the output should
                    // be the same, just slower.
                    if (state == 0) {
                        while (p+4 <= len &&
                               (value = ((alphabet[input[p] & 0xff] << 18) |
                                         (alphabet[input[p+1] & 0xff] << 12) |
                                         (alphabet[input[p+2] & 0xff] << 6) |
                                         (alphabet[input[p+3] & 0xff]))) >= 0) {
                            output[op+2] = (byte) value;
                            output[op+1] = (byte) (value >> 8);
                            output[op] = (byte) (value >> 16);
                            op += 3;
                            p += 4;
                        }
                        if (p >= len) break;
                    }
     
                    // The fast path isn't available -- either we've read a
                    // partial tuple, or the next four input bytes aren't all
                    // data, or whatever.  Fall back to the slower state
                    // machine implementation.
     
                    int d = alphabet[input[p++] & 0xff];
     
                    switch (state) {
                    case 0:
                        if (d >= 0) {
                            value = d;
                            ++state;
                        } else if (d != SKIP) {
                            this.state = 6;
                            return false;
                        }
                        break;
     
                    case 1:
                        if (d >= 0) {
                            value = (value << 6) | d;
                            ++state;
                        } else if (d != SKIP) {
                            this.state = 6;
                            return false;
                        }
                        break;
     
                    case 2:
                        if (d >= 0) {
                            value = (value << 6) | d;
                            ++state;
                        } else if (d == EQUALS) {
                            // Emit the last (partial) output tuple;
                            // expect exactly one more padding character.
                            output[op++] = (byte) (value >> 4);
                            state = 4;
                        } else if (d != SKIP) {
                            this.state = 6;
                            return false;
                        }
                        break;
     
                    case 3:
                        if (d >= 0) {
                            // Emit the output triple and return to state 0.
                            value = (value << 6) | d;
                            output[op+2] = (byte) value;
                            output[op+1] = (byte) (value >> 8);
                            output[op] = (byte) (value >> 16);
                            op += 3;
                            state = 0;
                        } else if (d == EQUALS) {
                            // Emit the last (partial) output tuple;
                            // expect no further data or padding characters.
                            output[op+1] = (byte) (value >> 2);
                            output[op] = (byte) (value >> 10);
                            op += 2;
                            state = 5;
                        } else if (d != SKIP) {
                            this.state = 6;
                            return false;
                        }
                        break;
     
                    case 4:
                        if (d == EQUALS) {
                            ++state;
                        } else if (d != SKIP) {
                            this.state = 6;
                            return false;
                        }
                        break;
     
                    case 5:
                        if (d != SKIP) {
                            this.state = 6;
                            return false;
                        }
                        break;
                    }
                }
     
                if (!finish) {
                    // We're out of input, but a future call could provide
                    // more.
                    this.state = state;
                    this.value = value;
                    this.op = op;
                    return true;
                }
     
                // Done reading input.  Now figure out where we are left in
                // the state machine and finish up.
     
                switch (state) {
                case 0:
                    // Output length is a multiple of three.  Fine.
                    break;
                case 1:
                    // Read one extra input byte, which isn't enough to
                    // make another output byte.  Illegal.
                    this.state = 6;
                    return false;
                case 2:
                    // Read two extra input bytes, enough to emit 1 more
                    // output byte.  Fine.
                    output[op++] = (byte) (value >> 4);
                    break;
                case 3:
                    // Read three extra input bytes, enough to emit 2 more
                    // output bytes.  Fine.
                    output[op++] = (byte) (value >> 10);
                    output[op++] = (byte) (value >> 2);
                    break;
                case 4:
                    // Read one padding '=' when we expected 2.  Illegal.
                    this.state = 6;
                    return false;
                case 5:
                    // Read all the padding '='s we expected and no more.
                    // Fine.
                    break;
                }
     
                this.state = state;
                this.op = op;
                return true;
            }
        }
     
        //  --------------------------------------------------------
        //  encoding
        //  --------------------------------------------------------
     
        /**
         * Base64-encode the given data and return a newly allocated
         * String with the result.
         *
         * @param input  the data to encode
         * @param flags  controls certain features of the encoded output.
         *               Passing {@code DEFAULT} results in output that
         *               adheres to RFC 2045.
         */
        public static String encodeToString(byte[] input, int flags) {
            try {
                return new String(encode(input, flags), "US-ASCII");
            } catch (UnsupportedEncodingException e) {
                // US-ASCII is guaranteed to be available.
                throw new AssertionError(e);
            }
        }
     
        /**
         * Base64-encode the given data and return a newly allocated
         * String with the result.
         *
         * @param input  the data to encode
         * @param offset the position within the input array at which to
         *               start
         * @param len    the number of bytes of input to encode
         * @param flags  controls certain features of the encoded output.
         *               Passing {@code DEFAULT} results in output that
         *               adheres to RFC 2045.
         */
        public static String encodeToString(byte[] input, int offset, int len, int flags) {
            try {
                return new String(encode(input, offset, len, flags), "US-ASCII");
            } catch (UnsupportedEncodingException e) {
                // US-ASCII is guaranteed to be available.
                throw new AssertionError(e);
            }
        }
     
        /**
         * Base64-encode the given data and return a newly allocated
         * byte[] with the result.
         *
         * @param input  the data to encode
         * @param flags  controls certain features of the encoded output.
         *               Passing {@code DEFAULT} results in output that
         *               adheres to RFC 2045.
         */
        public static byte[] encode(byte[] input, int flags) {
            return encode(input, 0, input.length, flags);
        }
     
        /**
         * Base64-encode the given data and return a newly allocated
         * byte[] with the result.
         *
         * @param input  the data to encode
         * @param offset the position within the input array at which to
         *               start
         * @param len    the number of bytes of input to encode
         * @param flags  controls certain features of the encoded output.
         *               Passing {@code DEFAULT} results in output that
         *               adheres to RFC 2045.
         */
        public static byte[] encode(byte[] input, int offset, int len, int flags) {
            Encoder encoder = new Encoder(flags, null);
     
            // Compute the exact length of the array we will produce.
            int output_len = len / 3 * 4;
     
            // Account for the tail of the data and the padding bytes, if any.
            if (encoder.do_padding) {
                if (len % 3 > 0) {
                    output_len += 4;
                }
            } else {
                switch (len % 3) {
                    case 0: break;
                    case 1: output_len += 2; break;
                    case 2: output_len += 3; break;
                }
            }
     
            // Account for the newlines, if any.
            if (encoder.do_newline && len > 0) {
                output_len += (((len-1) / (3 * Encoder.LINE_GROUPS)) + 1) *
                    (encoder.do_cr ? 2 : 1);
            }
     
            encoder.output = new byte[output_len];
            encoder.process(input, offset, len, true);
     
            assert encoder.op == output_len;
     
            return encoder.output;
        }
     
        /* package */ static class Encoder extends Coder {
            /**
             * Emit a new line every this many output tuples.  Corresponds to
             * a 76-character line length (the maximum allowable according to
             * <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>).
             */
            public static final int LINE_GROUPS = 19;
     
            /**
             * Lookup table for turning Base64 alphabet positions (6 bits)
             * into output bytes.
             */
            private static final byte ENCODE[] = {
                'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
                'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
                'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
                'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/',
            };
     
            /**
             * Lookup table for turning Base64 alphabet positions (6 bits)
             * into output bytes.
             */
            private static final byte ENCODE_WEBSAFE[] = {
                'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
                'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
                'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
                'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_',
            };
     
            final private byte[] tail;
            /* package */ int tailLen;
            private int count;
     
            final public boolean do_padding;
            final public boolean do_newline;
            final public boolean do_cr;
            final private byte[] alphabet;
     
            public Encoder(int flags, byte[] output) {
                this.output = output;
     
                do_padding = (flags & NO_PADDING) == 0;
                do_newline = (flags & NO_WRAP) == 0;
                do_cr = (flags & CRLF) != 0;
                alphabet = ((flags & URL_SAFE) == 0) ? ENCODE : ENCODE_WEBSAFE;
     
                tail = new byte[2];
                tailLen = 0;
     
                count = do_newline ? LINE_GROUPS : -1;
            }
     
            /**
             * @return an overestimate for the number of bytes {@code
             * len} bytes could encode to.
             */
            public int maxOutputSize(int len) {
                return len * 8/5 + 10;
            }
     
            public boolean process(byte[] input, int offset, int len, boolean finish) {
                // Using local variables makes the encoder about 9% faster.
                final byte[] alphabet = this.alphabet;
                final byte[] output = this.output;
                int op = 0;
                int count = this.count;
     
                int p = offset;
                len += offset;
                int v = -1;
     
                // First we need to concatenate the tail of the previous call
                // with any input bytes available now and see if we can empty
                // the tail.
     
                switch (tailLen) {
                    case 0:
                        // There was no tail.
                        break;
     
                    case 1:
                        if (p+2 <= len) {
                            // A 1-byte tail with at least 2 bytes of
                            // input available now.
                            v = ((tail[0] & 0xff) << 16) |
                                ((input[p++] & 0xff) << 8) |
                                (input[p++] & 0xff);
                            tailLen = 0;
                        };
                        break;
     
                    case 2:
                        if (p+1 <= len) {
                            // A 2-byte tail with at least 1 byte of input.
                            v = ((tail[0] & 0xff) << 16) |
                                ((tail[1] & 0xff) << 8) |
                                (input[p++] & 0xff);
                            tailLen = 0;
                        }
                        break;
                }
     
                if (v != -1) {
                    output[op++] = alphabet[(v >> 18) & 0x3f];
                    output[op++] = alphabet[(v >> 12) & 0x3f];
                    output[op++] = alphabet[(v >> 6) & 0x3f];
                    output[op++] = alphabet[v & 0x3f];
                    if (--count == 0) {
                        if (do_cr) output[op++] = '\r';
                        output[op++] = '\n';
                        count = LINE_GROUPS;
                    }
                }
     
                // At this point either there is no tail, or there are fewer
                // than 3 bytes of input available.
     
                // The main loop, turning 3 input bytes into 4 output bytes on
                // each iteration.
                while (p+3 <= len) {
                    v = ((input[p] & 0xff) << 16) |
                        ((input[p+1] & 0xff) << 8) |
                        (input[p+2] & 0xff);
                    output[op] = alphabet[(v >> 18) & 0x3f];
                    output[op+1] = alphabet[(v >> 12) & 0x3f];
                    output[op+2] = alphabet[(v >> 6) & 0x3f];
                    output[op+3] = alphabet[v & 0x3f];
                    p += 3;
                    op += 4;
                    if (--count == 0) {
                        if (do_cr) output[op++] = '\r';
                        output[op++] = '\n';
                        count = LINE_GROUPS;
                    }
                }
     
                if (finish) {
                    // Finish up the tail of the input.  Note that we need to
                    // consume any bytes in tail before any bytes
                    // remaining in input; there should be at most two bytes
                    // total.
     
                    if (p-tailLen == len-1) {
                        int t = 0;
                        v = ((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 4;
                        tailLen -= t;
                        output[op++] = alphabet[(v >> 6) & 0x3f];
                        output[op++] = alphabet[v & 0x3f];
                        if (do_padding) {
                            output[op++] = '=';
                            output[op++] = '=';
                        }
                        if (do_newline) {
                            if (do_cr) output[op++] = '\r';
                            output[op++] = '\n';
                        }
                    } else if (p-tailLen == len-2) {
                        int t = 0;
                        v = (((tailLen > 1 ? tail[t++] : input[p++]) & 0xff) << 10) |
                            (((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 2);
                        tailLen -= t;
                        output[op++] = alphabet[(v >> 12) & 0x3f];
                        output[op++] = alphabet[(v >> 6) & 0x3f];
                        output[op++] = alphabet[v & 0x3f];
                        if (do_padding) {
                            output[op++] = '=';
                        }
                        if (do_newline) {
                            if (do_cr) output[op++] = '\r';
                            output[op++] = '\n';
                        }
                    } else if (do_newline && op > 0 && count != LINE_GROUPS) {
                        if (do_cr) output[op++] = '\r';
                        output[op++] = '\n';
                    }
     
                    assert tailLen == 0;
                    assert p == len;
                } else {
                    // Save the leftovers in tail to be consumed on the next
                    // call to encodeInternal.
     
                    if (p == len-1) {
                        tail[tailLen++] = input[p];
                    } else if (p == len-2) {
                        tail[tailLen++] = input[p];
                        tail[tailLen++] = input[p+1];
                    }
                }
     
                this.op = op;
                this.count = count;
     
                return true;
            }
        }
     
        private Base64() { }   // don't instantiate
    }

    package ghj1976.Demo;
    
    
    
    
    import javax.crypto.Cipher;
    import javax.crypto.SecretKey;
    import javax.crypto.SecretKeyFactory;
    import javax.crypto.spec.DESKeySpec;
    import javax.crypto.spec.IvParameterSpec;
    
    
    public class DES {
    	 private static String DESKey = "12345678"; // 字节数必须是8的倍数  
    	 private static byte[] iv1 = {(byte)0x12, (byte)0x34, (byte)0x56, (byte)0x78, (byte)0x90, (byte)0xAB, (byte)0xCD, (byte)0xEF};
    	 public static void main(String[] args) {
    		 System.out.print("xyz");
    		DES des = new DES();
    		System.out.print(des.encrypt("19760519"));
    	} 
    	 public byte[] desEncrypt(byte[] plainText) throws Exception  
    	    {  
    //	        SecureRandom sr = new SecureRandom();  	        
    //	        sr.setSeed(iv);
    	        
    //	    	 IvParameterSpec iv = new IvParameterSpec(key.getBytes("UTF-8"));  
    	    	IvParameterSpec iv = new IvParameterSpec(iv1);
    	    	 
    	        DESKeySpec dks = new DESKeySpec(DESKey.getBytes());  
    	        SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");  
    	        SecretKey key = keyFactory.generateSecret(dks);  
    	        Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");  
    	        cipher.init(Cipher.ENCRYPT_MODE, key, iv);  
    	        byte data[] = plainText;  
    	        byte encryptedData[] = cipher.doFinal(data);  
    	        return encryptedData;  
    	    }  
    	      
    	    public String encrypt(String input)   
    	    {  
    	    	String result = "input";
    	        try {
    				result = base64Encode(desEncrypt(input.getBytes()));
    			} catch (Exception e) {
    				// TODO Auto-generated catch block
    				e.printStackTrace();
    			}  
    			return result;
    	    }  
    	      
    	    public  String base64Encode(byte[] s)   
    	    {  
    	        if (s == null)  
    	            return null;  
    	        return Base64.encodeToString(s, Base64.DEFAULT);
    
    	    }  
    }

    Object c 的加解密函数

    //
    //  Utility.h
    //  TheDealersForum
    //
    //  Created by Hailong Zhang on 5/3/11.
    //  Copyright 2011 Personal. All rights reserved.
    //
    
    #import <Foundation/Foundation.h>
    #import <CommonCrypto/CommonDigest.h>
    #import <CommonCrypto/CommonCryptor.h>
    
    
    @interface Utility : NSObject {
    
    }
    + (NSString *) udid;
    + (NSString *) md5:(NSString *)str;
    + (NSString *) doCipher:(NSString *)sTextIn key:(NSString *)sKey context:(CCOperation)encryptOrDecrypt;
    + (NSString *) encryptStr:(NSString *) str;
    + (NSString *) decryptStr:(NSString	*) str;
    
    #pragma mark Based64
    + (NSString *) encodeBase64WithString:(NSString *)strData;
    + (NSString *) encodeBase64WithData:(NSData *)objData;
    + (NSData *) decodeBase64WithString:(NSString *)strBase64;
    
    @end

    //
    //  Utility.m
    //  TheDealersForum
    //
    //  Created by Hailong Zhang on 5/3/11.
    //  Copyright 2011 Personal. All rights reserved.
    //
    
    
    
    #import "Utility.h"
    static NSString *_key = @"12345678";
    
    static const char _base64EncodingTable[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    static const short _base64DecodingTable[256] = {
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -2, -1, -1, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
    	-1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, -2, -2, 63,
    	52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2, -2, -2, -2,
    	-2,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
    	15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, -2,
    	-2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
    	41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
    	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2
    };
    
    @implementation Utility
    + (NSString *) udid
    {
    	return [Utility encryptStr:[[UIDevice currentDevice] uniqueIdentifier]];
    }
    + (NSString *) md5:(NSString *)str
    
    {
    	
    	const char *cStr = [str UTF8String];
    	
    	unsigned char result[CC_MD5_DIGEST_LENGTH];
    	
    	CC_MD5( cStr, strlen(cStr), result );
    	
    	return [NSString 
    			
    			stringWithFormat: @"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
    			
    			result[0], result[1],
    			
    			result[2], result[3],
    			
    			result[4], result[5],
    			
    			result[6], result[7],
    			
    			result[8], result[9],
    			
    			result[10], result[11],
    			
    			result[12], result[13],
    			
    			result[14], result[15]
    			
    			];
    	
    }
    + (NSString *) encryptStr:(NSString *) str
    {
    	return [Utility doCipher:str key:_key context:kCCEncrypt];
    }
    + (NSString *) decryptStr:(NSString	*) str
    {
    	return [Utility doCipher:str key:_key context:kCCDecrypt];
    }
    + (NSString *)doCipher:(NSString *)sTextIn key:(NSString *)sKey
    			   context:(CCOperation)encryptOrDecrypt {
    	NSStringEncoding EnC = NSUTF8StringEncoding;
    	
        NSMutableData * dTextIn;
        if (encryptOrDecrypt == kCCDecrypt) {    
            dTextIn = [[Utility decodeBase64WithString:sTextIn] mutableCopy];    
        }    
        else{    
            dTextIn = [[sTextIn dataUsingEncoding: EnC] mutableCopy];    
        }           
        NSMutableData * dKey = [[sKey dataUsingEncoding:EnC] mutableCopy];            
        [dKey setLength:kCCBlockSizeDES];        
        uint8_t *bufferPtr1 = NULL;    
        size_t bufferPtrSize1 = 0;    
        size_t movedBytes1 = 0;
        //uint8_t iv[kCCBlockSizeDES];
    	//memset((void *) iv, 0x0, (size_t) sizeof(iv));
    	Byte iv[] = {0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF};
        bufferPtrSize1 = ([sTextIn length] + kCCKeySizeDES) & ~(kCCKeySizeDES -1);    
        bufferPtr1 = malloc(bufferPtrSize1 * sizeof(uint8_t));    
        memset((void *)bufferPtr1, 0x00, bufferPtrSize1);    
    	CCCrypt(encryptOrDecrypt, // CCOperation op    
    			kCCAlgorithmDES, // CCAlgorithm alg    
    			kCCOptionPKCS7Padding, // CCOptions options    
    			[dKey bytes], // const void *key    
    			[dKey length], // size_t keyLength    
    			iv, // const void *iv    
    			[dTextIn bytes], // const void *dataIn
    			[dTextIn length],  // size_t dataInLength    
    			(void *)bufferPtr1, // void *dataOut    
    			bufferPtrSize1,     // size_t dataOutAvailable 
    			&movedBytes1);      // size_t *dataOutMoved    
    
    	
        NSString * sResult;    
        if (encryptOrDecrypt == kCCDecrypt){    
            sResult = [[[ NSString alloc] initWithData:[NSData dataWithBytes:bufferPtr1     
    																  length:movedBytes1] encoding:EnC] autorelease];    
        }    
        else {    
            NSData *dResult = [NSData dataWithBytes:bufferPtr1 length:movedBytes1]; 
            sResult = [Utility encodeBase64WithData:dResult];    
        }           
        return sResult;
    }
    
    
    
    + (NSString *)encodeBase64WithString:(NSString *)strData {
    	return [Utility encodeBase64WithData:[strData dataUsingEncoding:NSUTF8StringEncoding]];
    }
    
    + (NSString *)encodeBase64WithData:(NSData *)objData {
    	const unsigned char * objRawData = [objData bytes];
    	char * objPointer;
    	char * strResult;
    	
    	// Get the Raw Data length and ensure we actually have data
    	int intLength = [objData length];
    	if (intLength == 0) return nil;
    	
    	// Setup the String-based Result placeholder and pointer within that placeholder
    	strResult = (char *)calloc(((intLength + 2) / 3) * 4, sizeof(char));
    	objPointer = strResult;
    	
    	// Iterate through everything
    	while (intLength > 2) { // keep going until we have less than 24 bits
    		*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
    		*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
    		*objPointer++ = _base64EncodingTable[((objRawData[1] & 0x0f) << 2) + (objRawData[2] >> 6)];
    		*objPointer++ = _base64EncodingTable[objRawData[2] & 0x3f];
    		
    		// we just handled 3 octets (24 bits) of data
    		objRawData += 3;
    		intLength -= 3; 
    	}
    	
    	// now deal with the tail end of things
    	if (intLength != 0) {
    		*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
    		if (intLength > 1) {
    			*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
    			*objPointer++ = _base64EncodingTable[(objRawData[1] & 0x0f) << 2];
    			*objPointer++ = '=';
    		} else {
    			*objPointer++ = _base64EncodingTable[(objRawData[0] & 0x03) << 4];
    			*objPointer++ = '=';
    			*objPointer++ = '=';
    		}
    	}
    	
    	// Terminate the string-based result
    	*objPointer = '\0';
    	
    	// Return the results as an NSString object
    	return [NSString stringWithCString:strResult encoding:NSASCIIStringEncoding];
    }
    
    + (NSData *)decodeBase64WithString:(NSString *)strBase64 {
    	const char * objPointer = [strBase64 cStringUsingEncoding:NSASCIIStringEncoding];
    	int intLength = strlen(objPointer);
    	int intCurrent;
    	int i = 0, j = 0, k;
    	
    	unsigned char * objResult;
    	objResult = calloc(intLength, sizeof(char));
    	
    	// Run through the whole string, converting as we go
    	while ( ((intCurrent = *objPointer++) != '\0') && (intLength-- > 0) ) {
    		if (intCurrent == '=') {
    			if (*objPointer != '=' && ((i % 4) == 1)) {// || (intLength > 0)) {
    				// the padding character is invalid at this point -- so this entire string is invalid
    				free(objResult);
    				return nil;
    			}
    			continue;
    		}
    		
    		intCurrent = _base64DecodingTable[intCurrent];
    		if (intCurrent == -1) {
    			// we're at a whitespace -- simply skip over
    			continue;
    		} else if (intCurrent == -2) {
    			// we're at an invalid character
    			free(objResult);
    			return nil;
    		}
    		
    		switch (i % 4) {
    			case 0:
    				objResult[j] = intCurrent << 2;
    				break;
    				
    			case 1:
    				objResult[j++] |= intCurrent >> 4;
    				objResult[j] = (intCurrent & 0x0f) << 4;
    				break;
    				
    			case 2:
    				objResult[j++] |= intCurrent >>2;
    				objResult[j] = (intCurrent & 0x03) << 6;
    				break;
    				
    			case 3:
    				objResult[j++] |= intCurrent;
    				break;
    		}
    		i++;
    	}
    	
    	// mop things up if we ended on a boundary
    	k = j;
    	if (intCurrent == '=') {
    		switch (i % 4) {
    			case 1:
    				// Invalid state
    				free(objResult);
    				return nil;
    				
    			case 2:
    				k++;
    				// flow through
    			case 3:
    				objResult[k] = 0;
    		}
    	}
    	
    	// Cleanup and setup the return NSData
    	NSData * objData = [[[NSData alloc] initWithBytes:objResult length:j] autorelease];
    	free(objResult);
    	return objData;
    }
    @end

    参考资料:

    国政通DES加密Java和PHP互通
    http://toptulip.iteye.com/blog/780309

  • 相关阅读:
    HashMap 的实现原理(1.8)
    HashMap 的实现原理(1.7)
    Java面试总结 -2018(补录)
    在java中写出完美的单例模式
    ArrayList实现原理分析
    Ngigx+Tomcat配置动静分离,负载均衡
    微信小程序——常用快捷键【四】
    Linux服务器下安装vmware虚拟机
    微信小程序——部署云函数【三】
    微信小程序——安装开发工具和环境【二】
  • 原文地址:https://www.cnblogs.com/ghj1976/p/2058841.html
Copyright © 2020-2023  润新知