• tensorflow实现RNN及Word2Vec


    参考:《tensorflow实战》

    首先介绍一下Word2Vec

    Word2Vec:从原始语料中学习字词空间向量的预测模型。主要分为CBOW(Continue Bags of Words)连续词袋模型和Skip-Gram两种模式

    CBOW:从原始语句(中国的首都是___)推测目标字词(北京)。Skip-Gram正好相反,从目标词反推原始语句。

    预测模型使用最大似然的方法。在给定前面的语句h的情况下,最大化目标词汇的概率。比如(中国的___是北京),首都就是我们的目标词汇。

    使用NCE(噪声对比估计 Noise-Contrastive Estimation)作为损失函数。

    NCE:把上下文h对应的正确的词汇标记为正样本D=1,再抽取一些错误的词汇作为负样本(D=0),然后最大化目标函数的值

    基于Skip-Gram的Word2Vec

    import collections
    import math
    import os
    import random
    import zipfile
    import numpy as np
    import urllib
    import tensorflow as tf
    from six.moves import xrange  # pylint: disable=redefined-builtin
    import matplotlib as plt

    一、下载数据

    下载完数据之后,当前文件夹下有text8.zip文件

    # 下载数据
    # 如何下载过了,就不需要执行这段代码
    url = 'http://mattmahoney.net/dc/'
    
    def maybe_download(filename, expected_bytes):
        if not os.path.exists(filename):
            filename, _ = urllib.request.urlretrieve(url + filename, filename)
        # 获取文件相关属性
        statinfo = os.stat(filename)
        # 比对文件的大小是否正确
        if statinfo.st_size == expected_bytes:
            print('Found and verified', filename)
        else:
            print(statinfo.st_size)
            raise Exception('Failed to verify ' + filename + '. Can you get to it with a browser?')
        return filename
    
    filename = maybe_download('text8.zip', 31344016)
    Found and verified text8.zip

    二、解压下载的压缩文件

    # 解压下载的压缩文件
    def read_data(filename):
        with zipfile.ZipFile(filename) as f:
            data = tf.compat.as_str(f.read(f.namelist()[0])).split()
        return data
    
    # 单词表
    words = read_data(filename)
    print('Data size', len(words))
    Data size 17005207

    三、创建vocabulary词汇表,取top50000频数的单词

    # 只留50000个单词,其他的词都归为UNK
    # UNK : 不认识的词
    vocabulary_size = 50000
    
    def build_dataset(words, vocabulary_size):
        count = [['UNK', -1]]
        # extend追加一个列表
        # Counter用来统计没个词出现的次数
        # most_common返回一个Top列表,只留50000个单词包括UNK
        # c = Counter('abracadabra')
        # c.most_commom()
        # [('a', 5), ('r', 2), ('b', 2), ('c', 1), ('d', 1)]
        # c.most_common(3)
        # [('a', 5), ('r', 2), ('b', 2)]
        # 前50000个出现次数最多的词
        count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
        # 生成 dictionary,词对应编号, word:id(0-49999)
        # 词频越高编号越小
        dictionary = dict()
        for word, _ in count:
            dictionary[word] = len(dictionary)
        # data把数据集的词都编号
        data = list()
        unk_count = 0
        for word in words:
            if word in dictionary:
                index = dictionary[word]
            else:
                index = 0
                unk_count += 1  # dictionary['UNK']
            data.append(index)
        # 记录UNK词的数量
        count[0][1] = unk_count
        # 编号对应词的字典
        reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
        return data, count, dictionary, reverse_dictionary
    # data 数据集,编号形式
    # count 前50000个出现次数最多的词
    # dictionary 词对应编号
    # reverse_dictionary 编号对应词
    data, count, dictionary, reverse_dictionary = build_dataset(words, vocabulary_size)
    # 删除原始单词列表,节约内存
    # 打印最高频出现的词汇及其数量
    del words
    print('Most common words (+UNK)', count[:5])
    print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
    Most common words (+UNK) [['UNK', 418391], ('the', 1061396), ('of', 593677), ('and', 416629), ('one', 411764)]
    Sample data [5234, 3081, 12, 6, 195, 2, 3134, 46, 59, 156] ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first', 'used', 'against']

    四、生成Word2Vec的训练样本

    1. 使用Skip-Gram模式(从目标单词反推语境)

    data_index = 0
    
    def generate_batch(batch_size, num_skips, skip_window):
        # skip_window :单词最远可以联系的距离,设为1代表只能跟紧邻的两个单词生成样本
        # num_skips:每个单词生成多少样本
        # batch_size必须是num_skips的整数倍(确保每个batch包含了一个词汇对应的所有样本)
        global data_index
        assert batch_size % num_skips == 0
        assert num_skips <= 2 * skip_window
    
        batch = np.ndarray(shape=(batch_size), dtype=np.int32)
        labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
    
        span = 2 * skip_window + 1
        buffer = collections.deque(maxlen=span)
        
        for _ in range(span):
            buffer.append(data[data_index])
            data_index = (data_index + 1) % len(data)
        # 获取batch和label
        for i in range(batch_size // num_skips):
            target = skip_window
            targets_to_avoid = [skip_window]
            # 循环2次,一个目标单词对应两个上下文单词
            for j in range(num_skips):
                while target in targets_to_avoid:
                    # 可能先拿到前面的单词也可能先拿到后面的单词
                    target = random.randint(0, span - 1)
                targets_to_avoid.append(target)
                batch[i * num_skips + j] = buffer[skip_window]
                labels[i * num_skips + j, 0] = buffer[target]
            buffer.append(data[data_index])
            data_index = (data_index + 1) % len(data)
        # 回溯3个词。因为执行完一个batch的操作之后,data_index会往右多偏移span个位置
        data_index = (data_index + len(data) - span) % len(data)
        return batch, labels
    # 打印sample data
    batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
    for i in range(8):
        print(batch[i], reverse_dictionary[batch[i]],
              '->', labels[i, 0], reverse_dictionary[labels[i, 0]])
    3081 originated -> 5234 anarchism
    3081 originated -> 12 as
    12 as -> 6 a
    12 as -> 3081 originated
    6 a -> 195 term
    6 a -> 12 as
    195 term -> 2 of
    195 term -> 6 a

    五、建立和训练一个skip-gram模型

    # 建立和训练一个skip-gram模型
    batch_size = 128
    # 词向量维度
    embedding_size = 128
    skip_windows = 1
    num_skips = 2
    
    valid_size = 16
    valid_window = 100
    # 从0-100抽取16个整数,无放回抽样
    valid_examples = np.random.choice(valid_window, valid_size, replace=False)
    # 负采样样本数
    num_sampled = 64
    graph = tf.Graph()
    with graph.as_default():
        # 输入数据
        train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
        train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
        valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
    
        embeddings = tf.Variable(
            tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
        # embedding_lookup(params,ids)其实就是按照ids顺序返回params中的第ids行
        # 比如说,ids=[1,7,4],就是返回params中第1,7,4行。返回结果为由params的1,7,4行组成的tensor
        # 提取要训练的词
        embed = tf.nn.embedding_lookup(embeddings, train_inputs)
        nce_weights = tf.Variable(
            tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size)))
        nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
    
        loss = tf.reduce_mean(
            tf.nn.nce_loss(weights=nce_weights,
                           biases=nce_biases,
                           labels=train_labels,
                           inputs=embed,
                           num_sampled=num_sampled,
                           num_classes=vocabulary_size))
        optimizer = tf.train.GradientDescentOptimizer(1).minimize(loss)
    
        # embeddings 的L2范数
        norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
        # embeddings除以L2范数得到标准化后的 normalized_embeddings
        normalized_embeddings = embeddings / norm
        # 抽取一些常用词来测试余弦相似度
        valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
        # valid_size == 16
        # [16,1] * [1*50000] = [16,50000]
        similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True)
    
        init = tf.global_variables_initializer()

    优化器为SGD,然后计算嵌入向量embedding的L2范数norm,在将embedding除以其L2范数得到标准化后的normalized_embeddings。使用tf.nn.embedding_lookup查询单词的嵌入向量,并计算验证单词的嵌入向量与词汇表中所有单词的相似性。

    # Step 5: Begin training.
    num_steps = 100001
    final_embeddings = []
    
    with tf.Session(graph=graph) as session:
        init.run()
        print("Initialized")
    
        average_loss = 0
        for step in xrange(num_steps):
            # 获取一个批次的target,以及对应的labels,都是编号形式的
            batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_windows)
            feed_dict = {train_inputs:batch_inputs, train_labels:batch_labels}
    
            _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
            average_loss += loss_val
    
            # 计算训练2000次的平均loss
            if step % 2000 == 0:
                if step > 0:
                    average_loss /= 2000
                print("Average loss at step ", step, ": ", average_loss)
                average_loss = 0
    
            if step & 2000 == 0:
                sim = similarity.eval()
                # 计算验证集的余弦相似度最高的词
                for i in xrange(valid_size):
                    # 根据id拿到对应单词
                    valid_word = reverse_dictionary[valid_examples[i]]
                    top_k = 8
                    # 从大到小排序,排除自己本身,取前top_k个值
                    nearest = (-sim[i, :]).argsort()[1:top_k + 1]
                    log_str = "Nearest to %s:" % valid_word
                    for k in xrange(top_k):
                        close_word = reverse_dictionary[nearest[k]]
                        log_str = "%s %s," % (log_str, close_word)
                    print(log_str)
        # 训练结束得到的词向量
        final_embeddings = normalized_embeddings.eval()
    Initialized
    Average loss at step  0 :  296.63623046875
    Nearest to b: game, ampersand, odour, reorganize, relented, missiles, svetlana, sustains,
    ......
    Nearest to to: would, can, through, ursus, renouf, abet, circ, for,
    Nearest to also: which, often, now, still, operatorname, apatosaurus, capitalists, not,
    Average loss at step  100000 :  4.69689565706253

    六、可视化效果函数

    # Step 6: Visualize the embeddings.
    def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
        assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
        # 设置图片大小
        plt.figure(figsize = (15, 15))
        for i, label in enumerate(labels):
            x, y = low_dim_embs[i, :]
            plt.scatter(x, y)
            plt.annotate(label,
                         xy=(x, y),
                         xytext=(5, 2),
                         textcoords='offset points',
                         ha='right',
                         va='bottom')
        plt.savefig(filename)
    try:
        from sklearn.manifold import TSNE
        import matplotlib.pyplot as plt
    
        tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact')# mac:method='exact'
        # 画500个点
        plot_only = 500
        low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
        labels = [reverse_dictionary[i] for i in xrange(plot_only)]
        plot_with_labels(low_dim_embs, labels)
    
    except ImportError:
        print("Please install sklearn, matplotlib, and scipy to visualize embeddings."
    最后生成的图片如下,效果还可以。距离相近的单词在语义上具有很高的相似度。



  • 相关阅读:
    实战项目-网易
    iOS-Code-Snippet
    iOS父子控制器详解
    (Java) AES-128 数据加密
    (Java) byte[] 和 base64 字符串之间的转换
    关于 mybatis 报invalid comparison: java.util.Arrays$ArrayList and java.lang.String异常
    MUI 混合开发移动app应用开发 --- app版本升级
    MUI错误信息:系统已经存在较高版本,些安装包无法安装。
    找不到 cucumber.api.cli.Main 的报错解决方案
    Mysql 索引类型+索引方法
  • 原文地址:https://www.cnblogs.com/gezhuangzhuang/p/10265305.html
Copyright © 2020-2023  润新知