• GAN生成对抗网络-CGAN原理与基本实现-条件生成对抗网络04


    CGAN - 条件GAN

    原始GAN的缺点

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    代码实现

    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import layers
    import matplotlib.pyplot as plt
    %matplotlib inline
    import numpy as np
    import glob
    
    gpu = tf.config.experimental.list_physical_devices(device_type='GPU')
    tf.config.experimental.set_memory_growth(gpu[0], True)
    
    import tensorflow.keras.datasets.mnist as mnist
    
    (train_image, train_label), (_, _) = mnist.load_data()
    

    在这里插入图片描述
    在这里插入图片描述

    train_image = train_image / 127.5  - 1
    
    train_image = np.expand_dims(train_image, -1)
    
    train_image.shape
    

    在这里插入图片描述

    dataset = tf.data.Dataset.from_tensor_slices((train_image, train_label))
    
    AUTOTUNE = tf.data.experimental.AUTOTUNE
    

    在这里插入图片描述

    BATCH_SIZE = 256
    image_count = train_image.shape[0]
    noise_dim = 50
    
    dataset = dataset.shuffle(image_count).batch(BATCH_SIZE)
    
    def generator_model():
        seed = layers.Input(shape=((noise_dim,))) # 输入 形状长度为50的向量
        label = layers.Input(shape=(()))# 形状为空
            # 输入维度: 因0-9一共10个字符所以长度为10  映射成长度为50 输入序列的长度为1    
        x = layers.Embedding(10, 50, input_length=1)(label)#嵌入层将正整数(下标)转换为具有固定大小的向量
        x = layers.Flatten()(x)
        x = layers.concatenate([seed, x])# 与输入的seed合并
        x = layers.Dense(3*3*128, use_bias=False)(x)# 使用dense层转换成形状3*3通道128 的向量 不使用偏值
        x = layers.Reshape((3, 3, 128))(x) # reshape成3*3*128 
        x = layers.BatchNormalization()(x)# 批标准化
        x = layers.ReLU()(x) # 使用relu激活x 
        
        x = layers.Conv2DTranspose(64, (3, 3), strides=(2, 2), use_bias=False)(x)# 反卷积64个卷积核 卷积核大小(3*3) 跨度2
        x = layers.BatchNormalization()(x)# 批标准化
        x = layers.ReLU()(x)  #使用relu激活x   #  7*7
    # 反卷积64个卷积核 卷积核大小(3*3) 跨度2  填充方式same 不适用偏值
        x = layers.Conv2DTranspose(32, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.ReLU()(x)    #   14*14
    
        x = layers.Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.Activation('tanh')(x)
        
        model = tf.keras.Model(inputs=[seed,label], outputs=x)  
    # 创建模型    
        return model
    
    def discriminator_model():
        image = tf.keras.Input(shape=((28,28,1)))
        label = tf.keras.Input(shape=(()))
        
        x = layers.Embedding(10, 28*28, input_length=1)(label)
        x = layers.Reshape((28, 28, 1))(x)
        x = layers.concatenate([image, x])
        
        x = layers.Conv2D(32, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Conv2D(32*2, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Conv2D(32*4, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Flatten()(x)
        x1 = layers.Dense(1)(x)
        
        model = tf.keras.Model(inputs=[image, label], outputs=x1)
        return model
    
    generator = generator_model()
    
    discriminator = discriminator_model()
    
    binary_cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
    category_cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    
    def discriminator_loss(real_output, fake_output):
        real_loss = binary_cross_entropy(tf.ones_like(real_output), real_output)
        fake_loss = binary_cross_entropy(tf.zeros_like(fake_output), fake_output)
        total_loss = real_loss + fake_loss
        return total_loss
    
    def generator_loss(fake_output):
        fake_loss = binary_cross_entropy(tf.ones_like(fake_output), fake_output)
        return fake_loss
    
    generator_optimizer = tf.keras.optimizers.Adam(1e-5)
    discriminator_optimizer = tf.keras.optimizers.Adam(1e-5)
    
    @tf.function
    def train_step(images, labels):
        batchsize = labels.shape[0]
        noise = tf.random.normal([batchsize, noise_dim])
        
        with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
            generated_images = generator((noise, labels), training=True)
    
            real_output = discriminator((images, labels), training=True)
            fake_output = discriminator((generated_images, labels), training=True)
            
            gen_loss = generator_loss(fake_output)
            disc_loss = discriminator_loss(real_output, fake_output)
    
        gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
        gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
    
        generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
        discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
    
    noise_dim = 50
    num = 10
    noise_seed = tf.random.normal([num, noise_dim])
    cat_seed = np.random.randint(0, 10, size=(num, 1))
    print(cat_seed.T)
    

    在这里插入图片描述

    def generate_images(model, test_noise_input, test_cat_input, epoch):
        print('Epoch:', epoch+1)
      # Notice `training` is set to False.
      # This is so all layers run in inference mode (batchnorm).
        predictions = model((test_noise_input, test_cat_input), training=False)
        predictions = tf.squeeze(predictions)
        fig = plt.figure(figsize=(10, 1))
    
        for i in range(predictions.shape[0]):
            plt.subplot(1, 10, i+1)
            plt.imshow((predictions[i, :, :] + 1)/2)
            plt.axis('off')
    
    #    plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
        plt.show()
    
    def train(dataset, epochs):
        for epoch in range(epochs):
            for image_batch, label_batch in dataset:
                train_step(image_batch, label_batch)
            if epoch%10 == 0:
                generate_images(generator, noise_seed, cat_seed, epoch)
        generate_images(generator, noise_seed, cat_seed, epoch)
    
    EPOCHS = 200
    
    train(dataset, EPOCHS)
    

    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述

  • 相关阅读:
    99%的人没使用过它俩,Docker最佳实践+2
    kubernetes 中 kubeconfig 的用法
    jenkins批量修改配置文件
    记一次K8s排错实战
    记一次失败记录: MindSpore1.3.0 GPU 源码安装 —— Ubuntu18.04系统 (最终安装结果为失败)
    【转载】 使用Python的ctypes查看内存
    (摘抄) 源码分析multiprocessing的Value Array共享内存原理
    (续) python 中 ctypes 的使用尝试
    python 中 ctypes 的使用尝试
    深度强化学习算法(深度强化学习框架)为考虑可以快速适用多种深度学习框架建议采用弱耦合的软件设计方法——快速适用于多种深度学习计算框架的深度强化学习框架设计方案
  • 原文地址:https://www.cnblogs.com/gemoumou/p/14186250.html
Copyright © 2020-2023  润新知