• 初等变换求 |A| % Mod & A- % Mod & A* % Mod(模板)


     1 // |A| * A- = A* (伴随矩阵) = 逆矩阵 * 矩阵的值
     2 
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<cmath>
     7 #include<ctime>
     8 #include<iostream>
     9 #include<algorithm>
    10 using namespace std;
    11 
    12 const int MAXN = 205;
    13 const int Mod = 1000000007;
    14 int a[MAXN][MAXN], b[MAXN][MAXN];
    15 
    16 int fast_pow(int a, int k){
    17     int res = 1;
    18     while(k){
    19         if(k & 1) res = 1LL * res * a % Mod;
    20         a = 1LL * a * a % Mod;
    21         k >>= 1;
    22     }
    23     return res;
    24 }
    25 
    26 void solve(int n){
    27     for(int i = 1; i <= n; i++){
    28         for(int j = 1; j <= n; j++){
    29             b[i][j] = (i==j);//初始 b 为单位矩阵
    30         }
    31     }
    32 
    33     int det = 1;
    34     for(int i = 1; i <= n; i++){
    35         int t = i;
    36         for(int k = i; k <= n; k++){
    37             if(a[k][i]) t = k;
    38         }
    39 
    40         if(t != i) det *= -1;
    41         for(int j = 1; j <= n; j++){
    42             swap(a[i][j], a[t][j]);
    43             swap(b[i][j], b[t][j]);
    44         }
    45 
    46         det = 1LL * a[i][i] * det % Mod;
    47         int inv = fast_pow(a[i][i], Mod-2); // a[i][i] 的逆元
    48 
    49         for(int j = 1; j <= n; j++){
    50             a[i][j] = 1LL * inv * a[i][j] % Mod;
    51             b[i][j] = 1LL * inv * b[i][j] % Mod;
    52         }
    53         for(int k = 1; k <= n; k++){
    54             if(k == i) continue;
    55             int tmp = a[k][i];
    56             for(int j = 1; j <= n; j++){
    57                 a[k][j] = (a[k][j] - 1LL * a[i][j] * tmp % Mod + Mod) % Mod;
    58                 b[k][j] = (b[k][j] - 1LL * b[i][j] * tmp % Mod + Mod) % Mod;
    59             }
    60         }
    61     }
    62     //经过增广矩阵初等变换,此时 b 为 a 的逆矩阵
    63     det = (det + Mod) % Mod;  //    |a| % Mod
    64     for(int i = 1; i <= n; i++){
    65         for(int j = 1; j<= n; j++){
    66             b[i][j] = 1LL * det * b[i][j] % Mod;  //    将 b 由逆矩阵变成伴随矩阵
    67         }
    68     }
    69 }
    70 
    71 int main(void){
    72     int n;
    73     while(scanf("%d",&n)!=EOF){
    74         for(int i = 1; i <= n; i++)
    75             for(int j = 1; j <= n; j++)
    76                 scanf("%d", &a[i][j]);
    77         solve(n);
    78         for(int i = 1; i <= n; i++)
    79             printf("%d%c",(i & 1 ? b[i][1] : (Mod - b[i][1]) % Mod), " 
    " [i == n]);
    80     }
    81     return 0;
    82 }

    时间复杂度为 O(n^3)

  • 相关阅读:
    Html Document窗口的尺寸和位置
    如何在浏览器窗口上添加一个遮罩层
    mysql用户管理
    微信开发者工具 一键格式化与快捷键大全
    lua脚本加密与解密、luaR、ssulua、DZSH算法
    关于蓝奏云网盘地址无法打开问题
    lua脚本中如何获取当前时间与如何注解
    GG修改器常用参数大全与lua脚本的基本编写
    GG修改器的基本使用与lua脚本的基本认识
    小程序学习
  • 原文地址:https://www.cnblogs.com/geloutingyu/p/7182353.html
Copyright © 2020-2023  润新知