• HDU1007-Quoit Design


    Quoit Design

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 66464    Accepted Submission(s): 17621

    Problem Description

    Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
    In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

    Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.

    Input

    The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.

    Output

    For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places. 

    Sample Input

    2

    0 0

    1 1

    2

    1  1

    1 1

    3

    -1.5 0

    0 0

    0 1.5

    0

    Sample Output

    0.71
    0.00
    0.75
    #include <iostream>  
    #include <cstdio>  
    #include <cstring>  
    #include <cmath>  
    #include <algorithm>  
    using namespace std;
    const double INF = 1e20;
    const int N = 100005;
    
    struct Point
    {
        double x;
        double y;
    }point[N];
    int n;
    int tmpt_point[N];//For storing the points of |x-m|<=d
    
    //Sort the points
    bool cmpxy(const Point& a, const Point& b)
    {
        if (a.x != b.x)
            return a.x < b.x;
        return a.y < b.y;
    }
    
    //Sort the points of y position
    bool cmpy(const int& a, const int& b)
    {
        return point[a].y < point[b].y;
    }
    
    //Comparing the size of two values
    double min(double a, double b)
    {
        return a < b ? a : b;
    }
    
    //Calculate the distance between two points on a plane coordinate (by the algorithm of Euclid)
    double dis(int i, int j)
    {
        return sqrt((point[i].x - point[j].x)*(point[i].x - point[j].x)
            + (point[i].y - point[j].y)*(point[i].y - point[j].y));
    }
    
    
    //Solving the nearest point problem by divide and conquer method
    double EfficientClosestPair(int left, int right)
    {
        double d = INF;
        if (left == right)
            return d;
        if (left + 1 == right)
            return dis(left, right);
        int mid = (left + right) >> 1;
        double d1 = EfficientClosestPair(left, mid);
        double d2 = EfficientClosestPair(mid + 1, right);
        d = min(d1, d2);
        int i, j, k = 0;
        for (i = left; i <= right; i++)
        if (fabs(point[mid].x - point[i].x) <= d)
            tmpt_point[k++] = i;
        sort(tmpt_point, tmpt_point + k, cmpy);
        //Linear sweep
        for (i = 0; i < k; i++)
        {
            for (j = i + 1; j < k&&point[tmpt_point[j]].y - point[tmpt_point[i]].y < d; j++)
            {
                double d3 = dis(tmpt_point[i], tmpt_point[j]);//The closest distance may be between two sides
                if (d>d3)
                    d = d3;
            }
        }
        return d;
    }
    
    
    int main()
    {
        while (true)
        {
            scanf("%d", &n);//Input the number of points
            if (n == 0)
                break;
            for (int i = 0; i < n; i++)
                scanf("%lf %lf", &point[i].x, &point[i].y);//Input the position of points
            sort(point, point + n, cmpxy);//sort the points
            printf("%.2lf
    ", EfficientClosestPair(0, n - 1)/2);//Calculate nearest point pair distance
        }
        return 0;
    }

    Homework1

     

    1.Given n points on the plane, design one algorithm to find the distance between the nearest two points with the computational complexity O(nlogn). You should descript this algorithm using pseudocode, and write a program to realize this algorithm.

    For example,

    Input: n=5

    A={(0,2),(6,67),(43,71),(309,107),(189,140)}

    Output: 36.22

    (1).Algorithm in pseudocode:
    Algorithm: EfficientClosestPair(P,Q)
    //Solving the nearest point problem by divide and conquer method
    //Input: N points on the plane
    //Output: Euclidean distance between nearest two point pairs
    if(n<=3)
        Returns the minimum distance obtained by the brute force method.
    else:
    mid←(left+right)/2
    Copy the first「n/2」points of P to left(P_left)
    Copy the first「n/2」points of Q to mid(Q_left)
    Copy the remaining「n/2」points of P to mid+1(P_right)
    Copy the remaining「n/2」points of Q to right(Q_right)
        d1←EfficientClosestPair(left,mid)
    d2←EfficientClosestPair(mid+1,right)
    d←min(d1, d2)
    m←P[「n/2」/2-1].x
    Copy all |x-m|<=d points of Q to array S[0... k-1]
    Sort(S)
    dminsq←d2
    for i←0 to k-1 do
        j←i+1
    while(j<=k-1 and (S[j].y-S[i].y)2<d)
        dminsq←min((S[j].x-S[i].x)2+(S[j].y-S[i].y)2,dminsq)
        j←j+1
    return sqrt(dminsq)
    #include<iostream>
    #include<cstdio>
    #include <cstring>  
    #include<math.h>
    #include<algorithm>
    using namespace std;
    const double INF = 1e20;
    const int N = 100005;
    //之前把两个点之间的距离的变量定义为distance,出现了错误,调了半天才找出来,可能是变量名和内部函数冲突了
    //另外,用C语言输入的时候一定要严格按照格式要求,double用lf
    struct Point
    {
        double x;
        double y;
    }point[N];
    int n;
    int  tempt_point[N];
    
    
    bool compxy(const Point& a, const Point& b)
    {
        if (a.x != b.x)
            return a.x < b.x;
        return a.y < b.y;
    }
    
    bool compy(const int& a, const int& b)
    {
        return point[a].y < point[b].y;
    }
    
    double min(double a, double b)
    {
        return a < b ? a : b;
    }
    
    double distance_points(int i, int j)
    {
        return sqrt((point[i].x - point[j].x)*(point[i].x - point[j].x)
            + (point[i].y - point[j].y)*(point[i].y - point[j].y));
    }
    
    double Close_point(int left, int right)
    {
        double d = INF;
        if (left == right)
            return d;
        if (left + 1 == right)
            return distance_points(left, right);
        int mid = (left + right) / 2;
        double d1 = Close_point(left, mid);
        double d2 = Close_point(mid + 1, right);
        d = min(d1, d2);
        int i, j, k = 0;
        for (i = left; i <= right;i++)
        if (fabs(point[mid].x - point[i].x) < d)
            tempt_point[k++] = i;
        sort(tempt_point, tempt_point + k, compy);
        for (i = 0; i < k; i++)
        {
            for (j = i+1; j < k&&point[tempt_point[j]].y - point[tempt_point[i]].y < d;j++)
            {
                double d3 = distance_points(tempt_point[i], tempt_point[j]);
                if (d3 < d)
                    d = d3;
            }
        }
        return d;
    }
    
    int main()
    {
        while (1)
        {
        cin >> n;
        if (n == 0)
            break;
        int i, k;
        for (i = 0; i < n; i++)
            scanf("%lf%lf", &point[i].x ,&point[i].y);
        sort(point, point + n , compxy);
        printf("%.2lf
    ",Close_point(0, n-1)/2);
        }
        
        return 0;
    }
  • 相关阅读:
    spring AOP
    ElasticSearch RestHighLevelClient 通用操作
    JDK动态代理为什么必须针对接口
    Spring 中的统一异常处理
    ThreadPoolExecutor线程池解析与BlockingQueue的三种实现
    LinkedList源码解析(JDK8)
    MySQL表的四种分区类型
    Reids原理之IO模型
    缓存穿透和缓存雪崩问题
    uwsgi中processes和thread参数的影响大小
  • 原文地址:https://www.cnblogs.com/gcter/p/9833652.html
Copyright © 2020-2023  润新知