• FFmpeg来源简单分析:结构会员管理系统-AVClass


    =====================================================

    FFmpeg章列表:

    【架构图】

    FFmpeg源码结构图 - 解码

    FFmpeg源码结构图 - 编码

    【通用】

    FFmpeg 源码简单分析:av_register_all()

    FFmpeg 源码简单分析:avcodec_register_all()

    FFmpeg 源码简单分析:内存的分配和释放(av_malloc()av_free()等)

    FFmpeg 源码简单分析:常见结构体的初始化和销毁(AVFormatContextAVFrame等)

    FFmpeg 源码简单分析:avio_open2()

    FFmpeg 源码简单分析:av_find_decoder()av_find_encoder()

    FFmpeg 源码简单分析:avcodec_open2()

    FFmpeg 源码简单分析:avcodec_close()

    【解码】

    图解FFMPEG打开媒体的函数avformat_open_input

    FFmpeg 源码简单分析:avformat_open_input()

    FFmpeg 源码简单分析:avformat_find_stream_info()

    FFmpeg 源码简单分析:av_read_frame()

    FFmpeg 源码简单分析:avcodec_decode_video2()

    FFmpeg 源码简单分析:avformat_close_input()

    【编码】

    FFmpeg 源码简单分析:avformat_alloc_output_context2()

    FFmpeg 源码简单分析:avformat_write_header()

    FFmpeg 源码简单分析:avcodec_encode_video()

    FFmpeg 源码简单分析:av_write_frame()

    FFmpeg 源码简单分析:av_write_trailer()

    【其他】

    FFmpeg源码简单分析:日志输出系统(av_log()等)

    FFmpeg源码简单分析:结构体成员管理系统-AVClass

    FFmpeg源码简单分析:结构体成员管理系统-AVOption

    FFmpeg源码简单分析:libswscalesws_getContext()

    FFmpeg源码简单分析:libswscalesws_scale()

    FFmpeg源码简单分析:libavdeviceavdevice_register_all()

    FFmpeg源码简单分析:libavdevicegdigrab

    【脚本】

    FFmpeg源码简单分析:makefile

    FFmpeg源码简单分析:configure

    【H.264】

    FFmpegH.264解码器源码简单分析:概述

    =====================================================


    打算写两篇文章记录FFmpeg中和AVOption有关的源码。

    AVOption用于在FFmpeg中描写叙述结构体中的成员变量。

    它最基本的作用能够概括为两个字:“赋值”。

    一个AVOption结构体包括了变量名称,简短的帮助,取值等等信息。

    全部和AVOption有关的数据都存储在AVClass结构体中。假设一个结构体(比如AVFormatContext或者AVCodecContext)想要支持AVOption的话,它的第一个成员变量必须是一个指向AVClass结构体的指针。该AVClass中的成员变量option必须指向一个AVOption类型的静态数组。


    何为AVOption?

    AVOption是用来设置FFmpeg中变量的值的结构体。可能讲到这个作用有的人会奇怪:设置系统中变量的值,直接使用等于号“=”就能够。为什么还要专门定义一个结构体呢?事实上AVOption的特点就在于它赋值时候的灵活性。AVOption能够使用字符串为不论什么类型的变量赋值。传统意义上。假设变量类型为int,则须要使用整数来赋值;假设变量为double,则须要使用小数来赋值。假设变量类型为char *,才须要使用字符串来赋值。

    而AVOption将这些赋值“归一化”了,统一使用字符串赋值。比如给int型变量qp设定值为20,通过AVOption须要传递进去一个内容为“20”的字符串。
    此外,AVOption中变量的名称也使用字符串来表示。结合上面提到的使用字符串赋值的特性,我们能够发现使用AVOption之后。传递两个字符串(一个是变量的名称,一个是变量的值)就能够改变系统中变量的值。
    上文提到的这样的方法的意义在哪里?我个人感觉对于直接使用C语言进行开发的人来说。作用不是非常明显:全然能够使用等于号“=”就能够进行各种变量的赋值。可是对于从外部系统中调用FFmpeg的人来说,作用就非常大了:从外部系统中仅仅能够传递字符串给内部系统。比方说对于直接调用ffmpeg.exe的人来说,他们是无法改动FFmpeg内部各个变量的数值的,这样的情况下仅仅能通过输入“名称”和“值”这样的字符串,通过AVOption改变FFmpeg内部变量的值。由此可见,使用AVOption能够使FFmpeg更加适应多种多样的外部系统。

    突然想到了JavaEE开发中也有这样的相似的机制。互联网上仅仅能够传输字符串,即是没有方法传输整形、浮点型这样的的数据。而Java系统中却包括整形、浮点型等各种数据类型。

    因此开发JSP中的Servlet的时候经常须要将整数字符串手工转化成一个整型的变量。使用最多的一个函数就是Integer.parseInt()方法。比如以下代码能够将字符串“123”转化成整数123。

    int a=Integer.parseInt("123");

    而在使用JavaEE中的Struts2进行开发的时候。就不须要进行手动转换处理了。Struts2中包括了相似AVOption的这样的数据类型自己主动转换机制,能够将互联网上收到的字符串“名称”和“值”的组合自己主动赋值给对应名称的变量。


    由此发现了一个结论:编程语言之间真的是相通的!


    如今回到AVOption。事实上除了能够对FFmpeg经常使用结构体AVFormatContext。AVCodecContext等进行赋值之外,还能够对它们的私有数据priv_data进行赋值。

    这个字段里通常存储了各种编码器特有的结构体。而这些结构体的定义在FFmpeg的SDK中是找不到的。比如使用libx264进行编码的时候。通过AVCodecContext的priv_data字段能够对X264Context结构体中的变量进行赋值,设置preset,profile等。

    使用libx265进行编码的时候,通过AVCodecContext的priv_data字段能够对libx265Context结构体中的变量进行赋值,设置preset,tune等。



    何为AVClass?

    AVClass最基本的作用就是给结构体(比如AVFormatContext等)添加AVOption功能的支持。

    换句话说AVClass就是AVOption和目标结构体之间的“桥梁”。AVClass要求必须声明为目标结构体的第一个变量。

    AVClass中有一个option数组用于存储目标结构体的全部的AVOption。举个样例,AVFormatContext结构体。AVClass和AVOption之间的关系例如以下图所看到的。


    图中AVFormatContext结构体的第一个变量为AVClass类型的指针av_class,它在AVFormatContext结构体初始化的时候,被赋值指向了全局静态变量av_format_context_class结构体(定义位于libavformatoptions.c)。而AVClass类型的av_format_context_class结构体中的option变量指向了全局静态数组avformat_options(定义位于libavformatoptions_table.h)。

    AVOption

    以下開始从代码的角度记录AVOption。

    AVOption结构体的定义例如以下所看到的。


    /**
     * AVOption
     */
    typedef struct AVOption {
        const char *name;
    
        /**
         * short English help text
         * @todo What about other languages?
         */
        const char *help;
    
        /**
         * The offset relative to the context structure where the option
         * value is stored. It should be 0 for named constants.
         */
        int offset;
        enum AVOptionType type;
    
        /**
         * the default value for scalar options
         */
        union {
            int64_t i64;
            double dbl;
            const char *str;
            /* TODO those are unused now */
            AVRational q;
        } default_val;
        double min;                 ///< minimum valid value for the option
        double max;                 ///< maximum valid value for the option
    
        int flags;
    #define AV_OPT_FLAG_ENCODING_PARAM  1   ///< a generic parameter which can be set by the user for muxing or encoding
    #define AV_OPT_FLAG_DECODING_PARAM  2   ///< a generic parameter which can be set by the user for demuxing or decoding
    #if FF_API_OPT_TYPE_METADATA
    #define AV_OPT_FLAG_METADATA        4   ///< some data extracted or inserted into the file like title, comment, ...
    #endif
    #define AV_OPT_FLAG_AUDIO_PARAM     8
    #define AV_OPT_FLAG_VIDEO_PARAM     16
    #define AV_OPT_FLAG_SUBTITLE_PARAM  32
    /**
     * The option is inteded for exporting values to the caller.
     */
    #define AV_OPT_FLAG_EXPORT          64
    /**
     * The option may not be set through the AVOptions API, only read.
     * This flag only makes sense when AV_OPT_FLAG_EXPORT is also set.
     */
    #define AV_OPT_FLAG_READONLY        128
    #define AV_OPT_FLAG_FILTERING_PARAM (1<<16) ///< a generic parameter which can be set by the user for filtering
    //FIXME think about enc-audio, ... style flags
    
        /**
         * The logical unit to which the option belongs. Non-constant
         * options and corresponding named constants share the same
         * unit. May be NULL.
         */
        const char *unit;
    } AVOption;
    

    以下简单解释一下AVOption的几个成员变量:
    name:名称。
    help:简短的帮助。


    offset:选项相对结构体首部地址的偏移量(这个非常重要)。


    type:选项的类型。
    default_val:选项的默认值。
    min:选项的最小值。
    max:选项的最大值。
    flags:一些标记。
    unit:该选项所属的逻辑单元,能够为空。

    当中。default_val是一个union类型的变量。能够依据选项数据类型的不同。取int,double,char*。AVRational(表示分数)几种类型。type是一个AVOptionType类型的变量。AVOptionType是一个枚举类型,定义例如以下。

    enum AVOptionType{
        AV_OPT_TYPE_FLAGS,
        AV_OPT_TYPE_INT,
        AV_OPT_TYPE_INT64,
        AV_OPT_TYPE_DOUBLE,
        AV_OPT_TYPE_FLOAT,
        AV_OPT_TYPE_STRING,
        AV_OPT_TYPE_RATIONAL,
        AV_OPT_TYPE_BINARY,  ///< offset must point to a pointer immediately followed by an int for the length
        AV_OPT_TYPE_DICT,
        AV_OPT_TYPE_CONST = 128,
        AV_OPT_TYPE_IMAGE_SIZE = MKBETAG('S','I','Z','E'), ///< offset must point to two consecutive integers
        AV_OPT_TYPE_PIXEL_FMT  = MKBETAG('P','F','M','T'),
        AV_OPT_TYPE_SAMPLE_FMT = MKBETAG('S','F','M','T'),
        AV_OPT_TYPE_VIDEO_RATE = MKBETAG('V','R','A','T'), ///< offset must point to AVRational
        AV_OPT_TYPE_DURATION   = MKBETAG('D','U','R',' '),
        AV_OPT_TYPE_COLOR      = MKBETAG('C','O','L','R'),
        AV_OPT_TYPE_CHANNEL_LAYOUT = MKBETAG('C','H','L','A'),
    #if FF_API_OLD_AVOPTIONS
        FF_OPT_TYPE_FLAGS = 0,
        FF_OPT_TYPE_INT,
        FF_OPT_TYPE_INT64,
        FF_OPT_TYPE_DOUBLE,
        FF_OPT_TYPE_FLOAT,
        FF_OPT_TYPE_STRING,
        FF_OPT_TYPE_RATIONAL,
        FF_OPT_TYPE_BINARY,  ///< offset must point to a pointer immediately followed by an int for the length
        FF_OPT_TYPE_CONST=128,
    #endif
    };


    AVClass

    AVClass中存储了AVOption类型的数组option。用于存储选项信息。AVClass有一个特点就是它必须位于其支持的结构体的第一个位置。比如。AVFormatContext和AVCodecContext都支持AVClass,观察它们结构体的定义能够发现他们结构体的第一个变量都是AVClass。截取一小段AVFormatContext的定义的开头部分,例如以下所看到的。
    typedef struct AVFormatContext {
        /**
         * A class for logging and @ref avoptions. Set by avformat_alloc_context().
         * Exports (de)muxer private options if they exist.
         */
        const AVClass *av_class;
    
        /**
         * The input container format.
         *
         * Demuxing only, set by avformat_open_input().
         */
        struct AVInputFormat *iformat;
    
        /**
         * The output container format.
         *
         * Muxing only, must be set by the caller before avformat_write_header().
         */
    struct AVOutputFormat *oformat;
    //后文略
    

    截取一小段AVCodecContext的定义的开头部分,例如以下所看到的。
    typedef struct AVCodecContext {
        /**
         * information on struct for av_log
         * - set by avcodec_alloc_context3
         */
        const AVClass *av_class;
        int log_level_offset;
    
        enum AVMediaType codec_type; /* see AVMEDIA_TYPE_xxx */
        const struct AVCodec  *codec;
    	//后文略
    

    以下来看一下AVClass的定义,例如以下所看到的。
    /**
     * Describe the class of an AVClass context structure. That is an
     * arbitrary struct of which the first field is a pointer to an
     * AVClass struct (e.g. AVCodecContext, AVFormatContext etc.).
     */
    typedef struct AVClass {
        /**
         * The name of the class; usually it is the same name as the
         * context structure type to which the AVClass is associated.
         */
        const char* class_name;
    
        /**
         * A pointer to a function which returns the name of a context
         * instance ctx associated with the class.
         */
        const char* (*item_name)(void* ctx);
    
        /**
         * a pointer to the first option specified in the class if any or NULL
         *
         * @see av_set_default_options()
         */
        const struct AVOption *option;
    
        /**
         * LIBAVUTIL_VERSION with which this structure was created.
         * This is used to allow fields to be added without requiring major
         * version bumps everywhere.
         */
    
        int version;
    
        /**
         * Offset in the structure where log_level_offset is stored.
         * 0 means there is no such variable
         */
        int log_level_offset_offset;
    
        /**
         * Offset in the structure where a pointer to the parent context for
         * logging is stored. For example a decoder could pass its AVCodecContext
         * to eval as such a parent context, which an av_log() implementation
         * could then leverage to display the parent context.
         * The offset can be NULL.
         */
        int parent_log_context_offset;
    
        /**
         * Return next AVOptions-enabled child or NULL
         */
        void* (*child_next)(void *obj, void *prev);
    
        /**
         * Return an AVClass corresponding to the next potential
         * AVOptions-enabled child.
         *
         * The difference between child_next and this is that
         * child_next iterates over _already existing_ objects, while
         * child_class_next iterates over _all possible_ children.
         */
        const struct AVClass* (*child_class_next)(const struct AVClass *prev);
    
        /**
         * Category used for visualization (like color)
         * This is only set if the category is equal for all objects using this class.
         * available since version (51 << 16 | 56 << 8 | 100)
         */
        AVClassCategory category;
    
        /**
         * Callback to return the category.
         * available since version (51 << 16 | 59 << 8 | 100)
         */
        AVClassCategory (*get_category)(void* ctx);
    
        /**
         * Callback to return the supported/allowed ranges.
         * available since version (52.12)
         */
        int (*query_ranges)(struct AVOptionRanges **, void *obj, const char *key, int flags);
    } AVClass;
    

    以下简单解释一下AVClass的几个已经理解的成员变量:
    class_name:AVClass名称。


    item_name:函数。获取与AVClass相关联的结构体实例的名称。
    option:AVOption类型的数组(最重要)。
    version:完毕该AVClass的时候的LIBAVUTIL_VERSION。
    category:AVClass的类型,是一个类型为AVClassCategory的枚举型变量。


    当中AVClassCategory定义例如以下。
    typedef enum {
        AV_CLASS_CATEGORY_NA = 0,
        AV_CLASS_CATEGORY_INPUT,
        AV_CLASS_CATEGORY_OUTPUT,
        AV_CLASS_CATEGORY_MUXER,
        AV_CLASS_CATEGORY_DEMUXER,
        AV_CLASS_CATEGORY_ENCODER,
        AV_CLASS_CATEGORY_DECODER,
        AV_CLASS_CATEGORY_FILTER,
        AV_CLASS_CATEGORY_BITSTREAM_FILTER,
        AV_CLASS_CATEGORY_SWSCALER,
        AV_CLASS_CATEGORY_SWRESAMPLER,
        AV_CLASS_CATEGORY_DEVICE_VIDEO_OUTPUT = 40,
        AV_CLASS_CATEGORY_DEVICE_VIDEO_INPUT,
        AV_CLASS_CATEGORY_DEVICE_AUDIO_OUTPUT,
        AV_CLASS_CATEGORY_DEVICE_AUDIO_INPUT,
        AV_CLASS_CATEGORY_DEVICE_OUTPUT,
        AV_CLASS_CATEGORY_DEVICE_INPUT,
        AV_CLASS_CATEGORY_NB, ///< not part of ABI/API
    }AVClassCategory;

    上面解释字段还是比較抽象的。以下通过详细的样例看一下AVClass这个结构体。

    我们看几个详细的样例:

    • AVFormatContext中的AVClass
    • AVCodecContext中的AVClass
    • AVFrame中的AVClass
    • 各种组件(libRTMP,libx264,libx265)里面特有的AVClass。


    AVFormatContext

    AVFormatContext 中的AVClass定义位于libavformatoptions.c中。是一个名称为av_format_context_class的静态结构体。例如以下所看到的。


    static const AVClass av_format_context_class = {
        .class_name     = "AVFormatContext",
        .item_name      = format_to_name,
        .option         = avformat_options,
        .version        = LIBAVUTIL_VERSION_INT,
        .child_next     = format_child_next,
        .child_class_next = format_child_class_next,
        .category       = AV_CLASS_CATEGORY_MUXER,
        .get_category   = get_category,
    };

    从源码能够看出以下几点
    (1)class_name
    该AVClass名称是“AVFormatContext”。
    (2)item_name
    item_name指向一个函数format_to_name(),该函数定义例如以下所看到的。
    static const char* format_to_name(void* ptr)
    {
        AVFormatContext* fc = (AVFormatContext*) ptr;
        if(fc->iformat) return fc->iformat->name;
        else if(fc->oformat) return fc->oformat->name;
        else return "NULL";
    }

    从函数的定义能够看出,假设AVFormatContext结构体中的AVInputFormat结构体不为空,则返回AVInputFormat的name,然后尝试返回AVOutputFormat的name,假设AVOutputFormat也为空,则返回“NULL”。

    (3)option

    option字段则指向一个元素个数非常多的静态数组avformat_options。该数组单独定义于libavformatoptions_table.h中。

    当中包括了AVFormatContext支持的全部的AVOption,例如以下所看到的。

    /*
     * 雷霄骅
     * leixiaohua1020@126.com
     * 中国传媒大学/数字电视技术
     * http://blog.csdn.net/leixiaohua1020
     *
     */
    
    #ifndef AVFORMAT_OPTIONS_TABLE_H
    #define AVFORMAT_OPTIONS_TABLE_H
    
    #include <limits.h>
    
    #include "libavutil/opt.h"
    #include "avformat.h"
    #include "internal.h"
    
    #define OFFSET(x) offsetof(AVFormatContext,x)
    #define DEFAULT 0 //should be NAN but it does not work as it is not a constant in glibc as required by ANSI/ISO C
    //these names are too long to be readable
    #define E AV_OPT_FLAG_ENCODING_PARAM
    #define D AV_OPT_FLAG_DECODING_PARAM
    
    static const AVOption avformat_options[] = {
    {"avioflags", NULL, OFFSET(avio_flags), AV_OPT_TYPE_FLAGS, {.i64 = DEFAULT }, INT_MIN, INT_MAX, D|E, "avioflags"},
    {"direct", "reduce buffering", 0, AV_OPT_TYPE_CONST, {.i64 = AVIO_FLAG_DIRECT }, INT_MIN, INT_MAX, D|E, "avioflags"},
    {"probesize", "set probing size", OFFSET(probesize2), AV_OPT_TYPE_INT64, {.i64 = 5000000 }, 32, INT64_MAX, D},
    {"formatprobesize", "number of bytes to probe file format", OFFSET(format_probesize), AV_OPT_TYPE_INT, {.i64 = PROBE_BUF_MAX}, 0, INT_MAX-1, D},
    {"packetsize", "set packet size", OFFSET(packet_size), AV_OPT_TYPE_INT, {.i64 = DEFAULT }, 0, INT_MAX, E},
    {"fflags", NULL, OFFSET(flags), AV_OPT_TYPE_FLAGS, {.i64 = AVFMT_FLAG_FLUSH_PACKETS }, INT_MIN, INT_MAX, D|E, "fflags"},
    {"flush_packets", "reduce the latency by flushing out packets immediately", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_FLUSH_PACKETS }, INT_MIN, INT_MAX, E, "fflags"},
    {"ignidx", "ignore index", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_IGNIDX }, INT_MIN, INT_MAX, D, "fflags"},
    {"genpts", "generate pts", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_GENPTS }, INT_MIN, INT_MAX, D, "fflags"},
    {"nofillin", "do not fill in missing values that can be exactly calculated", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_NOFILLIN }, INT_MIN, INT_MAX, D, "fflags"},
    {"noparse", "disable AVParsers, this needs nofillin too", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_NOPARSE }, INT_MIN, INT_MAX, D, "fflags"},
    {"igndts", "ignore dts", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_IGNDTS }, INT_MIN, INT_MAX, D, "fflags"},
    {"discardcorrupt", "discard corrupted frames", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_DISCARD_CORRUPT }, INT_MIN, INT_MAX, D, "fflags"},
    {"sortdts", "try to interleave outputted packets by dts", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_SORT_DTS }, INT_MIN, INT_MAX, D, "fflags"},
    {"keepside", "don't merge side data", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_KEEP_SIDE_DATA }, INT_MIN, INT_MAX, D, "fflags"},
    {"latm", "enable RTP MP4A-LATM payload", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_MP4A_LATM }, INT_MIN, INT_MAX, E, "fflags"},
    {"nobuffer", "reduce the latency introduced by optional buffering", 0, AV_OPT_TYPE_CONST, {.i64 = AVFMT_FLAG_NOBUFFER }, 0, INT_MAX, D, "fflags"},
    {"seek2any", "allow seeking to non-keyframes on demuxer level when supported", OFFSET(seek2any), AV_OPT_TYPE_INT, {.i64 = 0 }, 0, 1, D},
    {"bitexact", "do not write random/volatile data", 0, AV_OPT_TYPE_CONST, { .i64 = AVFMT_FLAG_BITEXACT }, 0, 0, E, "fflags" },
    {"analyzeduration", "specify how many microseconds are analyzed to probe the input", OFFSET(max_analyze_duration2), AV_OPT_TYPE_INT64, {.i64 = 0 }, 0, INT64_MAX, D},
    {"cryptokey", "decryption key", OFFSET(key), AV_OPT_TYPE_BINARY, {.dbl = 0}, 0, 0, D},
    {"indexmem", "max memory used for timestamp index (per stream)", OFFSET(max_index_size), AV_OPT_TYPE_INT, {.i64 = 1<<20 }, 0, INT_MAX, D},
    {"rtbufsize", "max memory used for buffering real-time frames", OFFSET(max_picture_buffer), AV_OPT_TYPE_INT, {.i64 = 3041280 }, 0, INT_MAX, D}, /* defaults to 1s of 15fps 352x288 YUYV422 video */
    {"fdebug", "print specific debug info", OFFSET(debug), AV_OPT_TYPE_FLAGS, {.i64 = DEFAULT }, 0, INT_MAX, E|D, "fdebug"},
    {"ts", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_FDEBUG_TS }, INT_MIN, INT_MAX, E|D, "fdebug"},
    {"max_delay", "maximum muxing or demuxing delay in microseconds", OFFSET(max_delay), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, INT_MAX, E|D},
    {"start_time_realtime", "wall-clock time when stream begins (PTS==0)", OFFSET(start_time_realtime), AV_OPT_TYPE_INT64, {.i64 = AV_NOPTS_VALUE}, INT64_MIN, INT64_MAX, E},
    {"fpsprobesize", "number of frames used to probe fps", OFFSET(fps_probe_size), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX-1, D},
    {"audio_preload", "microseconds by which audio packets should be interleaved earlier", OFFSET(audio_preload), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX-1, E},
    {"chunk_duration", "microseconds for each chunk", OFFSET(max_chunk_duration), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX-1, E},
    {"chunk_size", "size in bytes for each chunk", OFFSET(max_chunk_size), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX-1, E},
    /* this is a crutch for avconv, since it cannot deal with identically named options in different contexts.
     * to be removed when avconv is fixed */
    {"f_err_detect", "set error detection flags (deprecated; use err_detect, save via avconv)", OFFSET(error_recognition), AV_OPT_TYPE_FLAGS, {.i64 = AV_EF_CRCCHECK }, INT_MIN, INT_MAX, D, "err_detect"},
    {"err_detect", "set error detection flags", OFFSET(error_recognition), AV_OPT_TYPE_FLAGS, {.i64 = AV_EF_CRCCHECK }, INT_MIN, INT_MAX, D, "err_detect"},
    {"crccheck", "verify embedded CRCs", 0, AV_OPT_TYPE_CONST, {.i64 = AV_EF_CRCCHECK }, INT_MIN, INT_MAX, D, "err_detect"},
    {"bitstream", "detect bitstream specification deviations", 0, AV_OPT_TYPE_CONST, {.i64 = AV_EF_BITSTREAM }, INT_MIN, INT_MAX, D, "err_detect"},
    {"buffer", "detect improper bitstream length", 0, AV_OPT_TYPE_CONST, {.i64 = AV_EF_BUFFER }, INT_MIN, INT_MAX, D, "err_detect"},
    {"explode", "abort decoding on minor error detection", 0, AV_OPT_TYPE_CONST, {.i64 = AV_EF_EXPLODE }, INT_MIN, INT_MAX, D, "err_detect"},
    {"ignore_err", "ignore errors", 0, AV_OPT_TYPE_CONST, {.i64 = AV_EF_IGNORE_ERR }, INT_MIN, INT_MAX, D, "err_detect"},
    {"careful",    "consider things that violate the spec, are fast to check and have not been seen in the wild as errors", 0, AV_OPT_TYPE_CONST, {.i64 = AV_EF_CAREFUL }, INT_MIN, INT_MAX, D, "err_detect"},
    {"compliant",  "consider all spec non compliancies as errors", 0, AV_OPT_TYPE_CONST, {.i64 = AV_EF_COMPLIANT }, INT_MIN, INT_MAX, D, "err_detect"},
    {"aggressive", "consider things that a sane encoder shouldn't do as an error", 0, AV_OPT_TYPE_CONST, {.i64 = AV_EF_AGGRESSIVE }, INT_MIN, INT_MAX, D, "err_detect"},
    {"use_wallclock_as_timestamps", "use wallclock as timestamps", OFFSET(use_wallclock_as_timestamps), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT_MAX-1, D},
    {"avoid_negative_ts", "shift timestamps so they start at 0", OFFSET(avoid_negative_ts), AV_OPT_TYPE_INT, {.i64 = -1}, -1, 2, E, "avoid_negative_ts"},
    {"auto",                "enabled when required by target format",    0, AV_OPT_TYPE_CONST, {.i64 = -1 }, INT_MIN, INT_MAX, E, "avoid_negative_ts"},
    {"disabled",            "do not change timestamps",                  0, AV_OPT_TYPE_CONST, {.i64 =  0 }, INT_MIN, INT_MAX, E, "avoid_negative_ts"},
    {"make_zero",           "shift timestamps so they start at 0",       0, AV_OPT_TYPE_CONST, {.i64 =  2 }, INT_MIN, INT_MAX, E, "avoid_negative_ts"},
    {"make_non_negative",   "shift timestamps so they are non negative", 0, AV_OPT_TYPE_CONST, {.i64 =  1 }, INT_MIN, INT_MAX, E, "avoid_negative_ts"},
    {"skip_initial_bytes", "set number of bytes to skip before reading header and frames", OFFSET(skip_initial_bytes), AV_OPT_TYPE_INT64, {.i64 = 0}, 0, INT64_MAX-1, D},
    {"correct_ts_overflow", "correct single timestamp overflows", OFFSET(correct_ts_overflow), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 1, D},
    {"flush_packets", "enable flushing of the I/O context after each packet", OFFSET(flush_packets), AV_OPT_TYPE_INT, {.i64 = 1}, 0, 1, E},
    {"metadata_header_padding", "set number of bytes to be written as padding in a metadata header", OFFSET(metadata_header_padding), AV_OPT_TYPE_INT, {.i64 = -1}, -1, INT_MAX, E},
    {"output_ts_offset", "set output timestamp offset", OFFSET(output_ts_offset), AV_OPT_TYPE_DURATION, {.i64 = 0}, -INT64_MAX, INT64_MAX, E},
    {"max_interleave_delta", "maximum buffering duration for interleaving", OFFSET(max_interleave_delta), AV_OPT_TYPE_INT64, { .i64 = 10000000 }, 0, INT64_MAX, E },
    {"f_strict", "how strictly to follow the standards (deprecated; use strict, save via avconv)", OFFSET(strict_std_compliance), AV_OPT_TYPE_INT, {.i64 = DEFAULT }, INT_MIN, INT_MAX, D|E, "strict"},
    {"strict", "how strictly to follow the standards", OFFSET(strict_std_compliance), AV_OPT_TYPE_INT, {.i64 = DEFAULT }, INT_MIN, INT_MAX, D|E, "strict"},
    {"strict", "strictly conform to all the things in the spec no matter what the consequences", 0, AV_OPT_TYPE_CONST, {.i64 = FF_COMPLIANCE_STRICT }, INT_MIN, INT_MAX, D|E, "strict"},
    {"normal", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_COMPLIANCE_NORMAL }, INT_MIN, INT_MAX, D|E, "strict"},
    {"experimental", "allow non-standardized experimental variants", 0, AV_OPT_TYPE_CONST, {.i64 = FF_COMPLIANCE_EXPERIMENTAL }, INT_MIN, INT_MAX, D|E, "strict"},
    {"max_ts_probe", "maximum number of packets to read while waiting for the first timestamp", OFFSET(max_ts_probe), AV_OPT_TYPE_INT, { .i64 = 50 }, 0, INT_MAX, D },
    {NULL},
    };
    
    #undef E
    #undef D
    #undef DEFAULT
    #undef OFFSET
    
    #endif /* AVFORMAT_OPTIONS_TABLE_H */
    

    AVCodecContext

    AVFormatContext 中的AVClass定义位于libavcodecoptions.c中。是一个名称为av_codec_context_class的静态结构体。

    例如以下所看到的。

    static const AVClass av_codec_context_class = {
        .class_name              = "AVCodecContext",
        .item_name               = context_to_name,
        .option                  = avcodec_options,
        .version                 = LIBAVUTIL_VERSION_INT,
        .log_level_offset_offset = offsetof(AVCodecContext, log_level_offset),
        .child_next              = codec_child_next,
        .child_class_next        = codec_child_class_next,
        .category                = AV_CLASS_CATEGORY_ENCODER,
        .get_category            = get_category,
    };

    从源码能够看出:
    (1)class_name
    该AVClass名称是“AVCodecContext”。
    (2)item_name
    item_name指向一个函数context_to_name (),该函数定义例如以下所看到的。
    static const char* context_to_name(void* ptr) {
        AVCodecContext *avc= ptr;
    
        if(avc && avc->codec && avc->codec->name)
            return avc->codec->name;
        else
            return "NULL";
    }
    

    从函数的定义能够看出。假设AVCodecContext中的Codec结构体不为空。则返回Codec的name,否则返回“NULL”。
    (3)category
    option字段则指向一个元素个数极多的静态数组avcodec_options。该数组单独定义于libavcodecoptions_table.h中。当中包括了AVCodecContext支持的全部的AVOption。因为该数组定义实在是太多了,在这里仅贴出它前面的一小部分。


    /*
     * 雷霄骅
     * leixiaohua1020@126.com
     * 中国传媒大学/数字电视技术
     * http://blog.csdn.net/leixiaohua1020
     *
     */
    
    #ifndef AVCODEC_OPTIONS_TABLE_H
    #define AVCODEC_OPTIONS_TABLE_H
    
    #include <float.h>
    #include <limits.h>
    #include <stdint.h>
    
    #include "libavutil/opt.h"
    #include "avcodec.h"
    #include "version.h"
    
    #define OFFSET(x) offsetof(AVCodecContext,x)
    #define DEFAULT 0 //should be NAN but it does not work as it is not a constant in glibc as required by ANSI/ISO C
    //these names are too long to be readable
    #define V AV_OPT_FLAG_VIDEO_PARAM
    #define A AV_OPT_FLAG_AUDIO_PARAM
    #define S AV_OPT_FLAG_SUBTITLE_PARAM
    #define E AV_OPT_FLAG_ENCODING_PARAM
    #define D AV_OPT_FLAG_DECODING_PARAM
    
    #define AV_CODEC_DEFAULT_BITRATE 200*1000
    
    static const AVOption avcodec_options[] = {
    {"b", "set bitrate (in bits/s)", OFFSET(bit_rate), AV_OPT_TYPE_INT, {.i64 = AV_CODEC_DEFAULT_BITRATE }, 0, INT_MAX, A|V|E},
    {"ab", "set bitrate (in bits/s)", OFFSET(bit_rate), AV_OPT_TYPE_INT, {.i64 = 128*1000 }, 0, INT_MAX, A|E},
    {"bt", "Set video bitrate tolerance (in bits/s). In 1-pass mode, bitrate tolerance specifies how far "
           "ratecontrol is willing to deviate from the target average bitrate value. This is not related "
           "to minimum/maximum bitrate. Lowering tolerance too much has an adverse effect on quality.",
           OFFSET(bit_rate_tolerance), AV_OPT_TYPE_INT, {.i64 = AV_CODEC_DEFAULT_BITRATE*20 }, 1, INT_MAX, V|E},
    {"flags", NULL, OFFSET(flags), AV_OPT_TYPE_FLAGS, {.i64 = DEFAULT }, 0, UINT_MAX, V|A|S|E|D, "flags"},
    {"unaligned", "allow decoders to produce unaligned output", 0, AV_OPT_TYPE_CONST, { .i64 = CODEC_FLAG_UNALIGNED }, INT_MIN, INT_MAX, V | D, "flags" },
    {"mv4", "use four motion vectors per macroblock (MPEG-4)", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_4MV }, INT_MIN, INT_MAX, V|E, "flags"},
    {"qpel", "use 1/4-pel motion compensation", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_QPEL }, INT_MIN, INT_MAX, V|E, "flags"},
    {"loop", "use loop filter", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_LOOP_FILTER }, INT_MIN, INT_MAX, V|E, "flags"},
    {"qscale", "use fixed qscale", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_QSCALE }, INT_MIN, INT_MAX, 0, "flags"},
    #if FF_API_GMC
    {"gmc", "use gmc", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_GMC }, INT_MIN, INT_MAX, V|E, "flags"},
    #endif
    #if FF_API_MV0
    {"mv0", "always try a mb with mv=<0,0>", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_MV0 }, INT_MIN, INT_MAX, V|E, "flags"},
    #endif
    #if FF_API_INPUT_PRESERVED
    {"input_preserved", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_INPUT_PRESERVED }, INT_MIN, INT_MAX, 0, "flags"},
    #endif
    {"pass1", "use internal 2-pass ratecontrol in first  pass mode", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_PASS1 }, INT_MIN, INT_MAX, 0, "flags"},
    {"pass2", "use internal 2-pass ratecontrol in second pass mode", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_PASS2 }, INT_MIN, INT_MAX, 0, "flags"},
    {"gray", "only decode/encode grayscale", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_GRAY }, INT_MIN, INT_MAX, V|E|D, "flags"},
    #if FF_API_EMU_EDGE
    {"emu_edge", "do not draw edges", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_EMU_EDGE }, INT_MIN, INT_MAX, 0, "flags"},
    #endif
    {"psnr", "error[?] variables will be set during encoding", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_PSNR }, INT_MIN, INT_MAX, V|E, "flags"},
    {"truncated", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_TRUNCATED }, INT_MIN, INT_MAX, 0, "flags"},
    #if FF_API_NORMALIZE_AQP
    {"naq", "normalize adaptive quantization", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_NORMALIZE_AQP }, INT_MIN, INT_MAX, V|E, "flags"},
    #endif
    {"ildct", "use interlaced DCT", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_INTERLACED_DCT }, INT_MIN, INT_MAX, V|E, "flags"},
    {"low_delay", "force low delay", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_LOW_DELAY }, INT_MIN, INT_MAX, V|D|E, "flags"},
    {"global_header", "place global headers in extradata instead of every keyframe", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_GLOBAL_HEADER }, INT_MIN, INT_MAX, V|A|E, "flags"},
    {"bitexact", "use only bitexact functions (except (I)DCT)", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_BITEXACT }, INT_MIN, INT_MAX, A|V|S|D|E, "flags"},
    {"aic", "H.263 advanced intra coding / MPEG-4 AC prediction", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_AC_PRED }, INT_MIN, INT_MAX, V|E, "flags"},
    {"ilme", "interlaced motion estimation", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_INTERLACED_ME }, INT_MIN, INT_MAX, V|E, "flags"},
    {"cgop", "closed GOP", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_CLOSED_GOP }, INT_MIN, INT_MAX, V|E, "flags"},
    {"output_corrupt", "Output even potentially corrupted frames", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG_OUTPUT_CORRUPT }, INT_MIN, INT_MAX, V|D, "flags"},
    {"fast", "allow non-spec-compliant speedup tricks", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG2_FAST }, INT_MIN, INT_MAX, V|E, "flags2"},
    {"noout", "skip bitstream encoding", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG2_NO_OUTPUT }, INT_MIN, INT_MAX, V|E, "flags2"},
    {"ignorecrop", "ignore cropping information from sps", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG2_IGNORE_CROP }, INT_MIN, INT_MAX, V|D, "flags2"},
    {"local_header", "place global headers at every keyframe instead of in extradata", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG2_LOCAL_HEADER }, INT_MIN, INT_MAX, V|E, "flags2"},
    {"chunks", "Frame data might be split into multiple chunks", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG2_CHUNKS }, INT_MIN, INT_MAX, V|D, "flags2"},
    {"showall", "Show all frames before the first keyframe", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG2_SHOW_ALL }, INT_MIN, INT_MAX, V|D, "flags2"},
    {"export_mvs", "export motion vectors through frame side data", 0, AV_OPT_TYPE_CONST, {.i64 = CODEC_FLAG2_EXPORT_MVS}, INT_MIN, INT_MAX, V|D, "flags2"},
    {"me_method", "set motion estimation method", OFFSET(me_method), AV_OPT_TYPE_INT, {.i64 = ME_EPZS }, INT_MIN, INT_MAX, V|E, "me_method"},
    {"zero", "zero motion estimation (fastest)", 0, AV_OPT_TYPE_CONST, {.i64 = ME_ZERO }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"full", "full motion estimation (slowest)", 0, AV_OPT_TYPE_CONST, {.i64 = ME_FULL }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"epzs", "EPZS motion estimation (default)", 0, AV_OPT_TYPE_CONST, {.i64 = ME_EPZS }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"esa", "esa motion estimation (alias for full)", 0, AV_OPT_TYPE_CONST, {.i64 = ME_FULL }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"tesa", "tesa motion estimation", 0, AV_OPT_TYPE_CONST, {.i64 = ME_TESA }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"dia", "diamond motion estimation (alias for EPZS)", 0, AV_OPT_TYPE_CONST, {.i64 = ME_EPZS }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"log", "log motion estimation", 0, AV_OPT_TYPE_CONST, {.i64 = ME_LOG }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"phods", "phods motion estimation", 0, AV_OPT_TYPE_CONST, {.i64 = ME_PHODS }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"x1", "X1 motion estimation", 0, AV_OPT_TYPE_CONST, {.i64 = ME_X1 }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"hex", "hex motion estimation", 0, AV_OPT_TYPE_CONST, {.i64 = ME_HEX }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"umh", "umh motion estimation", 0, AV_OPT_TYPE_CONST, {.i64 = ME_UMH }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"iter", "iter motion estimation", 0, AV_OPT_TYPE_CONST, {.i64 = ME_ITER }, INT_MIN, INT_MAX, V|E, "me_method" },
    {"extradata_size", NULL, OFFSET(extradata_size), AV_OPT_TYPE_INT, {.i64 = DEFAULT }, INT_MIN, INT_MAX},
    {"time_base", NULL, OFFSET(time_base), AV_OPT_TYPE_RATIONAL, {.dbl = 0}, INT_MIN, INT_MAX},
    {"g", "set the group of picture (GOP) size", OFFSET(gop_size), AV_OPT_TYPE_INT, {.i64 = 12 }, INT_MIN, INT_MAX, V|E},
    {"ar", "set audio sampling rate (in Hz)", OFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64 = DEFAULT }, INT_MIN, INT_MAX, A|D|E},
    {"ac", "set number of audio channels", OFFSET(channels), AV_OPT_TYPE_INT, {.i64 = DEFAULT }, INT_MIN, INT_MAX, A|D|E},
    

    AVFrame

    AVFrame 中的AVClass定义位于libavcodecoptions.c中。是一个名称为av_frame_class的静态结构体。

    例如以下所看到的。


    static const AVClass av_frame_class = {
        .class_name              = "AVFrame",
        .item_name               = NULL,
        .option                  = frame_options,
        .version                 = LIBAVUTIL_VERSION_INT,
    };

    option字段则指向一个元素个数极多的静态数组frame_options。frame_options定义例如以下所看到的。


    static const AVOption frame_options[]={
    {"best_effort_timestamp", "", FOFFSET(best_effort_timestamp), AV_OPT_TYPE_INT64, {.i64 = AV_NOPTS_VALUE }, INT64_MIN, INT64_MAX, 0},
    {"pkt_pos", "", FOFFSET(pkt_pos), AV_OPT_TYPE_INT64, {.i64 = -1 }, INT64_MIN, INT64_MAX, 0},
    {"pkt_size", "", FOFFSET(pkt_size), AV_OPT_TYPE_INT64, {.i64 = -1 }, INT64_MIN, INT64_MAX, 0},
    {"sample_aspect_ratio", "", FOFFSET(sample_aspect_ratio), AV_OPT_TYPE_RATIONAL, {.dbl = 0 }, 0, INT_MAX, 0},
    {"width", "", FOFFSET(width), AV_OPT_TYPE_INT, {.i64 = 0 }, 0, INT_MAX, 0},
    {"height", "", FOFFSET(height), AV_OPT_TYPE_INT, {.i64 = 0 }, 0, INT_MAX, 0},
    {"format", "", FOFFSET(format), AV_OPT_TYPE_INT, {.i64 = -1 }, 0, INT_MAX, 0},
    {"channel_layout", "", FOFFSET(channel_layout), AV_OPT_TYPE_INT64, {.i64 = 0 }, 0, INT64_MAX, 0},
    {"sample_rate", "", FOFFSET(sample_rate), AV_OPT_TYPE_INT, {.i64 = 0 }, 0, INT_MAX, 0},
    {NULL},
    };

    能够看出AVFrame的选项数组中包括了“width”,“height”这类用于视频帧的选项,以及“channel_layout”,“sample_rate”这类用于音频帧的选项。


    各种组件特有的AVClass

    除了FFmpeg中通用的AVFormatContext,AVCodecContext,AVFrame这类的结构体之外,每种特定的组件也包括自己的AVClass。

    以下举例几个。


    LibRTMP

    libRTMP中依据协议类型的不同定义了多种的AVClass。

    因为这些AVClass除了名字不一样之外。其他的字段一模一样,所以AVClass的声明写成了一个名称为RTMP_CLASS的宏。

    #define RTMP_CLASS(flavor)
    static const AVClass lib ## flavor ## _class = {
        .class_name = "lib" #flavor " protocol",
        .item_name  = av_default_item_name,
        .option     = options,
        .version    = LIBAVUTIL_VERSION_INT,
    };

    而后定义了多种AVCLass:
    RTMP_CLASS(rtmp)
    RTMP_CLASS(rtmpt)
    RTMP_CLASS(rtmpe)
    RTMP_CLASS(rtmpte)
    RTMP_CLASS(rtmps)

    这些AVClass的option字段指向的数组是一样的,例如以下所看到的。
    static const AVOption options[] = {
        {"rtmp_app", "Name of application to connect to on the RTMP server", OFFSET(app), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC|ENC},
        {"rtmp_buffer", "Set buffer time in milliseconds. The default is 3000.", OFFSET(client_buffer_time), AV_OPT_TYPE_STRING, {.str = "3000"}, 0, 0, DEC|ENC},
        {"rtmp_conn", "Append arbitrary AMF data to the Connect message", OFFSET(conn), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC|ENC},
        {"rtmp_flashver", "Version of the Flash plugin used to run the SWF player.", OFFSET(flashver), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC|ENC},
        {"rtmp_live", "Specify that the media is a live stream.", OFFSET(live), AV_OPT_TYPE_INT, {.i64 = 0}, INT_MIN, INT_MAX, DEC, "rtmp_live"},
        {"any", "both", 0, AV_OPT_TYPE_CONST, {.i64 = -2}, 0, 0, DEC, "rtmp_live"},
        {"live", "live stream", 0, AV_OPT_TYPE_CONST, {.i64 = -1}, 0, 0, DEC, "rtmp_live"},
        {"recorded", "recorded stream", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, 0, 0, DEC, "rtmp_live"},
        {"rtmp_pageurl", "URL of the web page in which the media was embedded. By default no value will be sent.", OFFSET(pageurl), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC},
        {"rtmp_playpath", "Stream identifier to play or to publish", OFFSET(playpath), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC|ENC},
        {"rtmp_subscribe", "Name of live stream to subscribe to. Defaults to rtmp_playpath.", OFFSET(subscribe), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC},
        {"rtmp_swfurl", "URL of the SWF player. By default no value will be sent", OFFSET(swfurl), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC|ENC},
        {"rtmp_swfverify", "URL to player swf file, compute hash/size automatically. (unimplemented)", OFFSET(swfverify), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC},
        {"rtmp_tcurl", "URL of the target stream. Defaults to proto://host[:port]/app.", OFFSET(tcurl), AV_OPT_TYPE_STRING, {.str = NULL }, 0, 0, DEC|ENC},
        { NULL },
    };

    Libx264

    Libx264的AVClass定义例如以下所看到的。
    static const AVClass x264_class = {
        .class_name = "libx264",
        .item_name  = av_default_item_name,
        .option     = options,
        .version    = LIBAVUTIL_VERSION_INT,
    };

    当中option字段指向的数组定义例如以下所看到的。这些option的使用频率还是比較高的。
    static const AVOption options[] = {
        { "preset",        "Set the encoding preset (cf. x264 --fullhelp)",   OFFSET(preset),        AV_OPT_TYPE_STRING, { .str = "medium" }, 0, 0, VE},
        { "tune",          "Tune the encoding params (cf. x264 --fullhelp)",  OFFSET(tune),          AV_OPT_TYPE_STRING, { 0 }, 0, 0, VE},
        { "profile",       "Set profile restrictions (cf. x264 --fullhelp) ", OFFSET(profile),       AV_OPT_TYPE_STRING, { 0 }, 0, 0, VE},
        { "fastfirstpass", "Use fast settings when encoding first pass",      OFFSET(fastfirstpass), AV_OPT_TYPE_INT,    { .i64 = 1 }, 0, 1, VE},
        {"level", "Specify level (as defined by Annex A)", OFFSET(level), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, VE},
        {"passlogfile", "Filename for 2 pass stats", OFFSET(stats), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, VE},
        {"wpredp", "Weighted prediction for P-frames", OFFSET(wpredp), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, VE},
        {"x264opts", "x264 options", OFFSET(x264opts), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, VE},
        { "crf",           "Select the quality for constant quality mode",    OFFSET(crf),           AV_OPT_TYPE_FLOAT,  {.dbl = -1 }, -1, FLT_MAX, VE },
        { "crf_max",       "In CRF mode, prevents VBV from lowering quality beyond this point.",OFFSET(crf_max), AV_OPT_TYPE_FLOAT, {.dbl = -1 }, -1, FLT_MAX, VE },
        { "qp",            "Constant quantization parameter rate control method",OFFSET(cqp),        AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, INT_MAX, VE },
        { "aq-mode",       "AQ method",                                       OFFSET(aq_mode),       AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, INT_MAX, VE, "aq_mode"},
        { "none",          NULL,                              0, AV_OPT_TYPE_CONST, {.i64 = X264_AQ_NONE},         INT_MIN, INT_MAX, VE, "aq_mode" },
        { "variance",      "Variance AQ (complexity mask)",   0, AV_OPT_TYPE_CONST, {.i64 = X264_AQ_VARIANCE},     INT_MIN, INT_MAX, VE, "aq_mode" },
        { "autovariance",  "Auto-variance AQ (experimental)", 0, AV_OPT_TYPE_CONST, {.i64 = X264_AQ_AUTOVARIANCE}, INT_MIN, INT_MAX, VE, "aq_mode" },
        { "aq-strength",   "AQ strength. Reduces blocking and blurring in flat and textured areas.", OFFSET(aq_strength), AV_OPT_TYPE_FLOAT, {.dbl = -1}, -1, FLT_MAX, VE},
        { "psy",           "Use psychovisual optimizations.",                 OFFSET(psy),           AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE },
        { "psy-rd",        "Strength of psychovisual optimization, in <psy-rd>:<psy-trellis> format.", OFFSET(psy_rd), AV_OPT_TYPE_STRING,  {0 }, 0, 0, VE},
        { "rc-lookahead",  "Number of frames to look ahead for frametype and ratecontrol", OFFSET(rc_lookahead), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, VE },
        { "weightb",       "Weighted prediction for B-frames.",               OFFSET(weightb),       AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE },
        { "weightp",       "Weighted prediction analysis method.",            OFFSET(weightp),       AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, INT_MAX, VE, "weightp" },
        { "none",          NULL, 0, AV_OPT_TYPE_CONST, {.i64 = X264_WEIGHTP_NONE},   INT_MIN, INT_MAX, VE, "weightp" },
        { "simple",        NULL, 0, AV_OPT_TYPE_CONST, {.i64 = X264_WEIGHTP_SIMPLE}, INT_MIN, INT_MAX, VE, "weightp" },
        { "smart",         NULL, 0, AV_OPT_TYPE_CONST, {.i64 = X264_WEIGHTP_SMART},  INT_MIN, INT_MAX, VE, "weightp" },
        { "ssim",          "Calculate and print SSIM stats.",                 OFFSET(ssim),          AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE },
        { "intra-refresh", "Use Periodic Intra Refresh instead of IDR frames.",OFFSET(intra_refresh),AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE },
        { "bluray-compat", "Bluray compatibility workarounds.",               OFFSET(bluray_compat) ,AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE },
        { "b-bias",        "Influences how often B-frames are used",          OFFSET(b_bias),        AV_OPT_TYPE_INT,    { .i64 = INT_MIN}, INT_MIN, INT_MAX, VE },
        { "b-pyramid",     "Keep some B-frames as references.",               OFFSET(b_pyramid),     AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, INT_MAX, VE, "b_pyramid" },
        { "none",          NULL,                                  0, AV_OPT_TYPE_CONST, {.i64 = X264_B_PYRAMID_NONE},   INT_MIN, INT_MAX, VE, "b_pyramid" },
        { "strict",        "Strictly hierarchical pyramid",       0, AV_OPT_TYPE_CONST, {.i64 = X264_B_PYRAMID_STRICT}, INT_MIN, INT_MAX, VE, "b_pyramid" },
        { "normal",        "Non-strict (not Blu-ray compatible)", 0, AV_OPT_TYPE_CONST, {.i64 = X264_B_PYRAMID_NORMAL}, INT_MIN, INT_MAX, VE, "b_pyramid" },
        { "mixed-refs",    "One reference per partition, as opposed to one reference per macroblock", OFFSET(mixed_refs), AV_OPT_TYPE_INT, { .i64 = -1}, -1, 1, VE },
        { "8x8dct",        "High profile 8x8 transform.",                     OFFSET(dct8x8),        AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE},
        { "fast-pskip",    NULL,                                              OFFSET(fast_pskip),    AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE},
        { "aud",           "Use access unit delimiters.",                     OFFSET(aud),           AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE},
        { "mbtree",        "Use macroblock tree ratecontrol.",                OFFSET(mbtree),        AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, 1, VE},
        { "deblock",       "Loop filter parameters, in <alpha:beta> form.",   OFFSET(deblock),       AV_OPT_TYPE_STRING, { 0 },  0, 0, VE},
        { "cplxblur",      "Reduce fluctuations in QP (before curve compression)", OFFSET(cplxblur), AV_OPT_TYPE_FLOAT,  {.dbl = -1 }, -1, FLT_MAX, VE},
        { "partitions",    "A comma-separated list of partitions to consider. "
                           "Possible values: p8x8, p4x4, b8x8, i8x8, i4x4, none, all", OFFSET(partitions), AV_OPT_TYPE_STRING, { 0 }, 0, 0, VE},
        { "direct-pred",   "Direct MV prediction mode",                       OFFSET(direct_pred),   AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, INT_MAX, VE, "direct-pred" },
        { "none",          NULL,      0,    AV_OPT_TYPE_CONST, { .i64 = X264_DIRECT_PRED_NONE },     0, 0, VE, "direct-pred" },
        { "spatial",       NULL,      0,    AV_OPT_TYPE_CONST, { .i64 = X264_DIRECT_PRED_SPATIAL },  0, 0, VE, "direct-pred" },
        { "temporal",      NULL,      0,    AV_OPT_TYPE_CONST, { .i64 = X264_DIRECT_PRED_TEMPORAL }, 0, 0, VE, "direct-pred" },
        { "auto",          NULL,      0,    AV_OPT_TYPE_CONST, { .i64 = X264_DIRECT_PRED_AUTO },     0, 0, VE, "direct-pred" },
        { "slice-max-size","Limit the size of each slice in bytes",           OFFSET(slice_max_size),AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, INT_MAX, VE },
        { "stats",         "Filename for 2 pass stats",                       OFFSET(stats),         AV_OPT_TYPE_STRING, { 0 },  0,       0, VE },
        { "nal-hrd",       "Signal HRD information (requires vbv-bufsize; "
                           "cbr not allowed in .mp4)",                        OFFSET(nal_hrd),       AV_OPT_TYPE_INT,    { .i64 = -1 }, -1, INT_MAX, VE, "nal-hrd" },
        { "none",          NULL, 0, AV_OPT_TYPE_CONST, {.i64 = X264_NAL_HRD_NONE}, INT_MIN, INT_MAX, VE, "nal-hrd" },
        { "vbr",           NULL, 0, AV_OPT_TYPE_CONST, {.i64 = X264_NAL_HRD_VBR},  INT_MIN, INT_MAX, VE, "nal-hrd" },
        { "cbr",           NULL, 0, AV_OPT_TYPE_CONST, {.i64 = X264_NAL_HRD_CBR},  INT_MIN, INT_MAX, VE, "nal-hrd" },
        { "avcintra-class","AVC-Intra class 50/100/200",                      OFFSET(avcintra_class),AV_OPT_TYPE_INT,     { .i64 = -1 }, -1, 200   , VE},
        { "x264-params",  "Override the x264 configuration using a :-separated list of key=value parameters", OFFSET(x264_params), AV_OPT_TYPE_STRING, { 0 }, 0, 0, VE },
        { NULL },
    };


    Libx265

    Libx265的AVClass定义例如以下所看到的。


    static const AVClass class = {
        .class_name = "libx265",
        .item_name  = av_default_item_name,
        .option     = options,
        .version    = LIBAVUTIL_VERSION_INT,
    };

    当中option字段指向的数组定义例如以下所看到的。


    static const AVOption options[] = {
        { "preset",      "set the x265 preset",                                                         OFFSET(preset),    AV_OPT_TYPE_STRING, { 0 }, 0, 0, VE },
        { "tune",        "set the x265 tune parameter",                                                 OFFSET(tune),      AV_OPT_TYPE_STRING, { 0 }, 0, 0, VE },
        { "x265-params", "set the x265 configuration using a :-separated list of key=value parameters", OFFSET(x265_opts), AV_OPT_TYPE_STRING, { 0 }, 0, 0, VE },
        { NULL }
    };

    官方代码中有关AVClass和AVOption的演示样例

    官方代码中给出了一小段演示样例代码,演示了怎样给一个普通的结构体加入AVOption的支持。

    例如以下所看到的。


    typedef struct test_struct {
        AVClass  *class;
        int      int_opt;
        char    str_opt;
        uint8_t  bin_opt;
        int      bin_len;
    } test_struct;
    
    static const AVOption test_options[] = {
      { "test_int", "This is a test option of int type.", offsetof(test_struct, int_opt),
        AV_OPT_TYPE_INT, { .i64 = -1 }, INT_MIN, INT_MAX },
      { "test_str", "This is a test option of string type.", offsetof(test_struct, str_opt),
        AV_OPT_TYPE_STRING },
      { "test_bin", "This is a test option of binary type.", offsetof(test_struct, bin_opt),
        AV_OPT_TYPE_BINARY },
      { NULL },
    };
    
    static const AVClass test_class = {
        .class_name = "test class",
        .item_name  = av_default_item_name,
        .option     = test_options,
        .version    = LIBAVUTIL_VERSION_INT,
    };
    

    AVClass有关的API

    与AVClass相关的API非常少。

    AVFormatContext提供了一个获取当前AVClass的函数avformat_get_class()。它的代码非常easy,直接返回全局静态变量av_format_context_class。

    定义例如以下所看到的。


    const AVClass *avformat_get_class(void)
    {
        return &av_format_context_class;
    }

    相同。AVCodecContext也提供了一个获取当前AVClass的函数avcodec_get_class()。它直接返回静态变量av_codec_context_class。定义例如以下所看到的。
    const AVClass *avcodec_get_class(void)
    {
        return &av_codec_context_class;
    }

    至此FFmpeg的AVClass就基本上分析完毕了。

    下篇文章详细分析AVOption。





    雷霄骅
    leixiaohua1020@126.com
    http://blog.csdn.net/leixiaohua1020



    版权声明:本文博客原创文章。博客,未经同意,不得转载。

  • 相关阅读:
    aspose.word 页脚插入图片图片浮动
    Aspose.Words插入表格,表格居中显示
    git常用命令
    openlayers之矢量加载标记点
    三、反射、动态加载
    openlayers交互之多边形
    openlayers轨迹回放
    openlayers交互之线
    关闭2000的默认共享
    开始blog,有点晚,但还是早
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4658464.html
Copyright © 2020-2023  润新知