• Android5 Zygote 与 SystemServer 启动流程分析


    Android5 Zygote 与 SystemServer 启动流程分析

    前言

    Android5.0.1 的启动流程与之前的版本号相比变化并不大,OK,变化尽管还是有:SystemServer 启动过程的 init1(), init2()没有了,但主干流程依旧不变:Linux 内核载入完毕之后,首先启动 init 进程。然后解析 init.rc,并依据其内容由 init 进程装载 Android 文件系统、创建系统文件夹、初始化属性系统、启动一些守护进程,当中最重要的守护进程就是 Zygote 进程。Zygote 进程初始化时会创建 Dalvik 虚拟机、预装载系统的资源和 Java 类。

    全部从 Zygote 进程 fork 出来的用户进程都将继承和共享这些预载入的资源。

    init 进程是 Android 的第一个进程,而 Zygote 进程则是全部用户进程的根进程。SystemServer 是 Zygote 进程 fork 出的第一个进程,也是整个 Android 系统的核心进程。

    zygote 进程

    解析 zygote.rc

    在文件里 /system/core/rootdir/init.rc 中包括了 zygote.rc:

    import /init.${ro.zygote}.rc

    ${ro.zygote}是平台相关的參数,实际可相应到 init.zygote32.rc。 init.zygote64.rc, init.zygote64_32.rc, init.zygote32_64.rc,前两个仅仅会启动单一app_process(64) 进程,而后两个则会启动两个app_process进程:第二个app_process进程称为 secondary,在后面的代码中能够看到相应 secondary socket 的创建过程。

    为简化起见,在这里就不考虑这样的创建两个app_process进程的情形。

    以 /system/core/rootdir/init.zygote32.rc 为例:

        service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
        class main
        socket zygote stream 660 root system
        onrestart write /sys/android_power/request_state wake
        onrestart write /sys/power/state on
        onrestart restart media
        onrestart restart netd

    第一行创建了名为 zygote 的进程,这个进程是通过 app_process 的 main 启动并以”-Xzygote /system/bin –zygote –start-system-server”作为main的入口參数。

    app_process 相应代码为 framework/base/cmds/app_process/app_main.cpp。在这个文件的main函数中:

    AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
    
        if (zygote) {
            runtime.start("com.android.internal.os.ZygoteInit", args);
        } else if (className) {
            runtime.start("com.android.internal.os.RuntimeInit", args);
        }

    依据入口參数。我们知道 zygote 为true,args參数中包括了”start-system-server”。

    AppRuntime 继承自 AndroidRuntime,因此下一步就运行到 AndroidRuntime 的 start 函数。

    void AndroidRuntime::start(const char* className, const Vector<String8>& options)
    {
        /* start the virtual machine */ // 创建虚拟机
        JniInvocation jni_invocation;
        jni_invocation.Init(NULL);
        JNIEnv* env;
        if (startVm(&mJavaVM, &env) != 0) {
            return;
        }
        onVmCreated(env);
    
        ...
        //调用className相应类的静态main()函数
        char* slashClassName = toSlashClassName(className);
        jclass startClass = env->FindClass(slashClassName);
        jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
        env->CallStaticVoidMethod(startClass, startMeth, strArray);
        ...
    }

    start函数主要做两件事:创建虚拟机和调用传入类名相应类的 main 函数。

    因此下一步就运行到 com.android.internal.os.ZygoteInit 的 main 函数。

        public static void main(String argv[]) {
            try {
                boolean startSystemServer = false;
                String socketName = "zygote";
                for (int i = 1; i < argv.length; i++) {
                    if ("start-system-server".equals(argv[i])) {
                        startSystemServer = true;
                    }
                    ...
                }
    
                registerZygoteSocket(socketName);
                ...
                preload();
                ...
    
                if (startSystemServer) {
                    startSystemServer(abiList, socketName);
                }
    
                Log.i(TAG, "Accepting command socket connections");
                runSelectLoop(abiList);
    
                closeServerSocket();
            } catch (MethodAndArgsCaller caller) {
                caller.run();
            } catch (RuntimeException ex) {
                Log.e(TAG, "Zygote died with exception", ex);
                closeServerSocket();
                throw ex;
            }
        }

    它主要做了三件事情:
    1. 调用 registerZygoteSocket 函数创建了一个 socket 接口,用来和 ActivityManagerService 通讯;
    2. 调用 startSystemServer 函数来启动 SystemServer;
    3. 调用 runSelectLoop 函数进入一个无限循环在前面创建的 socket 接口上等待 ActivityManagerService 请求创建新的应用程序进程。

    这里要留意 catch (MethodAndArgsCaller caller) 这一行,android 在这里通过抛出一个异常来处理正常的业务逻辑。

        socket zygote stream 660 root system

    系统启动脚本文件 init.rc 是由 init 进程来解释运行的。而 init 进程的源码位于 system/core/init 文件夹中。在 init.c 文件里,是由 service_start 函数来解释 init.zygote32.rc 文件里的 service 命令的:

        void service_start(struct service *svc, const char *dynamic_args)
        {
            ...
            pid = fork();
    
            if (pid == 0) {
                struct socketinfo *si;
                ...
    
                for (si = svc->sockets; si; si = si->next) {
                    int socket_type = (
                            !strcmp(si->type, "stream") ? SOCK_STREAM :
                                (!strcmp(si->type, "dgram") ? SOCK_DGRAM : SOCK_SEQPACKET));
                    int s = create_socket(si->name, socket_type,
                                          si->perm, si->uid, si->gid, si->socketcon ?: scon);
                    if (s >= 0) {
                        publish_socket(si->name, s);
                    }
                }
                ...
            }
            ...
        }

    每个 service 命令都会促使 init 进程调用 fork 函数来创建一个新的进程,在新的进程里面,会分析里面的 socket 选项,对于每个 socket 选项。都会通过 create_socket 函数来在 /dev/socket 文件夹下创建一个文件,在 zygote 进程中 socket 选项为“socket zygote stream 660 root system”,因此这个文件便是 zygote了,然后得到的文件描写叙述符通过 publish_socket 函数写入到环境变量中去:

        static void publish_socket(const char *name, int fd)
        {
            char key[64] = ANDROID_SOCKET_ENV_PREFIX;
            char val[64];
    
            strlcpy(key + sizeof(ANDROID_SOCKET_ENV_PREFIX) - 1,
                    name,
                    sizeof(key) - sizeof(ANDROID_SOCKET_ENV_PREFIX));
            snprintf(val, sizeof(val), "%d", fd);
            add_environment(key, val);
    
            /* make sure we don't close-on-exec */
            fcntl(fd, F_SETFD, 0);
        }

    这里传进来的參数name值为”zygote”,而 ANDROID_SOCKET_ENV_PREFIX 在 system/core/include/cutils/sockets.h 定义为:

    #define ANDROID_SOCKET_ENV_PREFIX   "ANDROID_SOCKET_"
    #define ANDROID_SOCKET_DIR          "/dev/socket"

    因此。这里就把上面得到的文件描写叙述符写入到以 “ANDROID_SOCKET_zygote” 为 key 值的环境变量中。

    又由于上面的 ZygoteInit.registerZygoteSocket 函数与这里创建 socket 文件的 create_socket 函数是运行在同一个进程中,因此,上面的 ZygoteInit.registerZygoteSocket 函数能够直接使用这个文件描写叙述符来创建一个 Java层的LocalServerSocket 对象。假设其他进程也需要打开这个 /dev/socket/zygote 文件来和 zygote 进程进行通信,那就必需要通过文件名称来连接这个 LocalServerSocket了。也就是说创建 zygote socket 之后,ActivityManagerService 就能够通过该 socket 与 zygote 进程通信从而 fork 创建新进程。android 中的全部应用进程都是通过这样的方式 fork zygote 进程创建的。在 ActivityManagerService中 的 startProcessLocked 中调用了Process.start()方法。进而调用 Process.startViaZygote 和 Process.openZygoteSocketIfNeeded。

    启动 SystemServer

    socket 创建完毕之后,紧接着就通过 startSystemServer 函数来启动 SystemServer 进程。

        private static boolean startSystemServer(String abiList, String socketName)
        {
            long capabilities = posixCapabilitiesAsBits(
                OsConstants.CAP_BLOCK_SUSPEND,
                OsConstants.CAP_KILL,
                OsConstants.CAP_NET_ADMIN,
                OsConstants.CAP_NET_BIND_SERVICE,
                OsConstants.CAP_NET_BROADCAST,
                OsConstants.CAP_NET_RAW,
                OsConstants.CAP_SYS_MODULE,
                OsConstants.CAP_SYS_NICE,
                OsConstants.CAP_SYS_RESOURCE,
                OsConstants.CAP_SYS_TIME,
                OsConstants.CAP_SYS_TTY_CONFIG
            );
            /* Hardcoded command line to start the system server */
            String args[] = {
                "--setuid=1000",
                "--setgid=1000",
                "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1032,3001,3002,3003,3006,3007",
                "--capabilities=" + capabilities + "," + capabilities,
                "--runtime-init",
                "--nice-name=system_server",
                "com.android.server.SystemServer",
            };
            ZygoteConnection.Arguments parsedArgs = null;
    
            int pid;
    
            try {
                parsedArgs = new ZygoteConnection.Arguments(args);
                ...
    
                /* Request to fork the system server process */
                pid = Zygote.forkSystemServer(
                        parsedArgs.uid, parsedArgs.gid,
                        parsedArgs.gids,
                        parsedArgs.debugFlags,
                        null,
                        parsedArgs.permittedCapabilities,
                        parsedArgs.effectiveCapabilities);
            } catch (IllegalArgumentException ex) {
                throw new RuntimeException(ex);
            }
    
            /* For child process */
            if (pid == 0) {
                if (hasSecondZygote(abiList)) {
                    waitForSecondaryZygote(socketName);
                }
    
                handleSystemServerProcess(parsedArgs);
            }
    
            return true;
        }

    这里我们能够从參数猜測出:创建名为“system_server”的进程。其入口是: com.android.server.SystemServer 的 main 函数。

    zygote 进程通过 Zygote.forkSystemServer 函数来创建一个新的进程来启动 SystemServer 组件,返回值 pid 等 0 的地方就是新的进程要运行的路径。即新创建的进程会运行 handleSystemServerProcess 函数。hasSecondZygote 是针对 init.zygote64_32.rc。 init.zygote32_64.rc 这两者情况的。在这里跳过不谈。接下来来看 handleSystemServerProcess:

        /**
         * Finish remaining work for the newly forked system server process.
         */
        private static void handleSystemServerProcess(
                ZygoteConnection.Arguments parsedArgs)
                throws ZygoteInit.MethodAndArgsCaller
        {
            closeServerSocket();
    
            // set umask to 0077 so new files and directories will default to owner-only permissions.
            Os.umask(S_IRWXG | S_IRWXO);
    
            if (parsedArgs.niceName != null) {
                Process.setArgV0(parsedArgs.niceName);
            }
    
            final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");
    
            ClassLoader cl = null;
            if (systemServerClasspath != null) {
                cl = new PathClassLoader(systemServerClasspath, ClassLoader.getSystemClassLoader());
                Thread.currentThread().setContextClassLoader(cl);
            }
    
            /*
             * Pass the remaining arguments to SystemServer.
             */
            RuntimeInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
    
            /* should never reach here */
        }

    handleSystemServerProcess 会抛出 MethodAndArgsCaller 异常,前面提到这个异常事实上是处理正常业务逻辑的,相当于一个回调。

    由于由 zygote 进程创建的子进程会继承 zygote 进程在前面创建的 socket 文件描写叙述符,而这里的子进程又不会用到它,因此。这里就调用 closeServerSocket 函数来关闭它。SYSTEMSERVERCLASSPATH 是包括 /system/framework/framework.jar 的环境变量。它定义在 system/core/rootdir/init.environ.rc.in 中:

        on init
            export PATH /sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
            export ANDROID_BOOTLOGO 1
            export ANDROID_ROOT /system
            export SYSTEMSERVERCLASSPATH %SYSTEMSERVERCLASSPATH%
            export LD_PRELOAD libsigchain.so
    
    handleSystemServerProcess 函数接着调用 RuntimeInit.zygoteInit 函数来进一步运行启动 SystemServer 组件的操作。
    
        public static final void zygoteInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
                throws ZygoteInit.MethodAndArgsCaller {
    
            commonInit();
            nativeZygoteInit();
    
            applicationInit(targetSdkVersion, argv, classLoader);
        }

    commonInit 设置线程未处理异常handler,时区等。JNI 方法 nativeZygoteInit 实如今 frameworks/base/core/jni/AndroidRuntime.cpp 中:

    static AndroidRuntime* gCurRuntime = NULL;
    
    static void com_android_internal_os_RuntimeInit_nativeZygoteInit(JNIEnv* env, jobject clazz)
    {
        gCurRuntime->onZygoteInit();
    }

    AndroidRuntime 是个带虚函数的基类,真正的实现是在 app_main.cpp 中的 AppRuntime:

    class AppRuntime : public AndroidRuntime
    {
        virtual void onStarted()
        {
            sp<ProcessState> proc = ProcessState::self();
            ALOGV("App process: starting thread pool.
    ");
            proc->startThreadPool();
    
            AndroidRuntime* ar = AndroidRuntime::getRuntime();
            ar->callMain(mClassName, mClass, mArgs);
    
            IPCThreadState::self()->stopProcess();
        }
    
        virtual void onZygoteInit()
        {
            // Re-enable tracing now that we're no longer in Zygote.
            atrace_set_tracing_enabled(true);
    
            sp<ProcessState> proc = ProcessState::self();
            ALOGV("App process: starting thread pool.
    ");
            proc->startThreadPool();
        }
    
        virtual void onExit(int code)
        {
            if (mClassName.isEmpty()) {
                // if zygote
                IPCThreadState::self()->stopProcess();
            }
    
            AndroidRuntime::onExit(code);
        }
    };

    通过运行 AppRuntime::onZygoteInit 函数,这个进程的 Binder 进程间通信机制基础设施就准备好了,參考代码 frameworks/native/libs/binder/ProcessState.cpp。

    接下来,看 applicationInit :

        private static void applicationInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
                throws ZygoteInit.MethodAndArgsCaller {
    
            final Arguments args;
            try {
                args = new Arguments(argv);
            } catch (IllegalArgumentException ex) {
                Slog.e(TAG, ex.getMessage());
                // let the process exit
                return;
            }
    
            // Remaining arguments are passed to the start class's static main
            invokeStaticMain(args.startClass, args.startArgs, classLoader);
        }

    applicationInit 仅仅是转调 invokeStaticMain:

        private static void invokeStaticMain(String className, String[] argv, ClassLoader classLoader)
                throws ZygoteInit.MethodAndArgsCaller
        {
            Class cl;
            cl = Class.forName(className, true, classLoader);
            Method m;
            m = cl.getMethod("main", new Class[] { String[].class });
    
    
            /*
             * This throw gets caught in ZygoteInit.main(), which responds
             * by invoking the exception's run() method. This arrangement
             * clears up all the stack frames that were required in setting
             * up the process.
             */
            throw new ZygoteInit.MethodAndArgsCaller(m, argv);
        }

    invokeStaticMain 也非常easy。通过反射找到參数 className 相应的类的静态 main 方法。然后将该方法与參数生成 ZygoteInit.MethodAndArgsCaller 对象当做异常抛出,这个异常对象在 ZygoteInit 的 main 函数被捕获并运行该对象的 run 方法。

        /**
         * Helper exception class which holds a method and arguments and
         * can call them. This is used as part of a trampoline to get rid of
         * the initial process setup stack frames.
         */
        public static class MethodAndArgsCaller extends Exception
                implements Runnable {
    
            public void run() {
                ...
                mMethod.invoke(null, new Object[] { mArgs });
                ...
            }
        }

    这么复杂的跳转。事实上就做了一件简单的事情:依据 className 反射调用该类的静态 main 方法。

    这个类名是 ZygoteInit.startSystemServer 方法中写死的 com.android.server.SystemServer。 从而进入 SystemServer 类的 main()方法。

    运行 ZygoteInit.runSelectLoop

    在 startSystemServer 函数中,创建 system_server 进程之后,pid 等于 0 时在该新进程中运行 SystemServer.main,否则回到 zygote 进程进行运行 ZygoteInit.runSelectLoop:

        private static void runSelectLoop(String abiList) throws MethodAndArgsCaller {
            ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
            ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
            FileDescriptor[] fdArray = new FileDescriptor[4];
    
            fds.add(sServerSocket.getFileDescriptor());
            peers.add(null);
    
            int loopCount = GC_LOOP_COUNT;
            while (true) {
                int index;
    
                /*
                 * Call gc() before we block in select().
                 * It's work that has to be done anyway, and it's better
                 * to avoid making every child do it.  It will also
                 * madvise() any free memory as a side-effect.
                 *
                 * Don't call it every time, because walking the entire
                 * heap is a lot of overhead to free a few hundred bytes.
                 */
                if (loopCount <= 0) {
                    gc();
                    loopCount = GC_LOOP_COUNT;
                } else {
                    loopCount--;
                }
    
                try {
                    fdArray = fds.toArray(fdArray);
                    index = selectReadable(fdArray);
                } catch (IOException ex) {
                    throw new RuntimeException("Error in select()", ex);
                }
    
                if (index < 0) {
                    throw new RuntimeException("Error in select()");
                } else if (index == 0) {
                    ZygoteConnection newPeer = acceptCommandPeer(abiList);
                    peers.add(newPeer);
                    fds.add(newPeer.getFileDescriptor());
                } else {
                    boolean done;
                    done = peers.get(index).runOnce();
    
                    if (done) {
                        peers.remove(index);
                        fds.remove(index);
                    }
                }
            }
        }

    runSelectLoop函数的逻辑比較简单,主要有两点:
    1、 处理client的连接和请求。前面创建的 LocalServerSocket 对象保存 sServerSocket,这个 socket 通过 selectReadable 等待 ActivityManagerService(简写 AMS) 与之通信。selectReadable 是一个native函数。内部调用select等待 AMS 连接。AMS 连接上之后就会返回: 返回值 < 0:内部错误发生;返回值 = 0:第一次连接到服务端 ;返回值 > 0:与服务端已经建立连接。并開始发送数据。每个链接在 zygote 进程中使用 ZygoteConnection 对象表示。

    2、 client的请求由 ZygoteConnection.runOnce 来处理,这种方法也抛出 MethodAndArgsCaller 异常,从而进入 MethodAndArgsCaller.run 中调用依据客户请求数据反射出的类的 main 方法。

        private String[] readArgumentList()
        {
            int argc;
    
            try {
                String s = mSocketReader.readLine();
    
                if (s == null) {
                    // EOF reached.
                    return null;
                }
                argc = Integer.parseInt(s);
            } catch (NumberFormatException ex) {
                Log.e(TAG, "invalid Zygote wire format: non-int at argc");
                throw new IOException("invalid wire format");
            }
    
            String[] result = new String[argc];
            for (int i = 0; i < argc; i++) {
                result[i] = mSocketReader.readLine();
                if (result[i] == null) {
                    // We got an unexpected EOF.
                    throw new IOException("truncated request");
                }
            }
    
            return result;
        }
    
        boolean runOnce() throws ZygoteInit.MethodAndArgsCaller {
            String args[];
            Arguments parsedArgs = null;
            args = readArgumentList();
            parsedArgs = new Arguments(args);
    
            ...
            pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids,
                    parsedArgs.debugFlags, rlimits, parsedArgs.mountExternal, parsedArgs.seInfo,
                    parsedArgs.niceName, fdsToClose, parsedArgs.instructionSet,
                    parsedArgs.appDataDir);
            ...
        }

    SystemServer 启动过程

    在前面启动 SystemServer一节讲到,通过反射调用类 com.android.server.SystemServer main() 函数,从而開始运行 SystemServer 的初始化流程。

    SystemServer.main()

        /**
         * The main entry point from zygote.
         */
        public static void main(String[] args) {
            new SystemServer().run();
        }

    main 函数创建一个 SystemServer 对象,调用其 run() 方法。

        private void run() {
            // If a device's clock is before 1970 (before 0), a lot of
            // APIs crash dealing with negative numbers, notably
            // java.io.File#setLastModified, so instead we fake it and
            // hope that time from cell towers or NTP fixes it shortly.
            if (System.currentTimeMillis() < EARLIEST_SUPPORTED_TIME) {
                Slog.w(TAG, "System clock is before 1970; setting to 1970.");
                SystemClock.setCurrentTimeMillis(EARLIEST_SUPPORTED_TIME);
            } // 检測时间设置
    
            // Here we go!
            Slog.i(TAG, "Entered the Android system server!");
            EventLog.writeEvent(EventLogTags.BOOT_PROGRESS_SYSTEM_RUN, SystemClock.uptimeMillis());
    
            // In case the runtime switched since last boot (such as when
            // the old runtime was removed in an OTA), set the system
            // property so that it is in sync. We can't do this in
            // libnativehelper's JniInvocation::Init code where we already
            // had to fallback to a different runtime because it is
            // running as root and we need to be the system user to set
            // the property. http://b/11463182
            SystemProperties.set("persist.sys.dalvik.vm.lib.2", VMRuntime.getRuntime().vmLibrary());
    
            // Enable the sampling profiler.
            if (SamplingProfilerIntegration.isEnabled()) {
                SamplingProfilerIntegration.start();
                mProfilerSnapshotTimer = new Timer();
                mProfilerSnapshotTimer.schedule(new TimerTask() {
                    @Override
                    public void run() {
                        SamplingProfilerIntegration.writeSnapshot("system_server", null);
                    }
                }, SNAPSHOT_INTERVAL, SNAPSHOT_INTERVAL);
            } // 启动性能分析採样
    
            // Mmmmmm... more memory!
            VMRuntime.getRuntime().clearGrowthLimit();
    
            // The system server has to run all of the time, so it needs to be
            // as efficient as possible with its memory usage.
            VMRuntime.getRuntime().setTargetHeapUtilization(0.8f);
    
            // Some devices rely on runtime fingerprint generation, so make sure
            // we've defined it before booting further.
            Build.ensureFingerprintProperty();
    
            // Within the system server, it is an error to access Environment paths without
            // explicitly specifying a user.
            Environment.setUserRequired(true);
    
            // Ensure binder calls into the system always run at foreground priority.
            BinderInternal.disableBackgroundScheduling(true);
    
            // Prepare the main looper thread (this thread).
            android.os.Process.setThreadPriority(
                    android.os.Process.THREAD_PRIORITY_FOREGROUND);
            android.os.Process.setCanSelfBackground(false);
            Looper.prepareMainLooper(); // 准备主线程循环
    
            // Initialize native services.
            System.loadLibrary("android_servers");
            nativeInit();
    
            // Check whether we failed to shut down last time we tried.
            // This call may not return.
            performPendingShutdown();
    
            // Initialize the system context.
            createSystemContext();
    
            // Create the system service manager.
            mSystemServiceManager = new SystemServiceManager(mSystemContext);
            LocalServices.addService(SystemServiceManager.class, mSystemServiceManager);
    
            // Start services.  // 启动服务
            try {
                startBootstrapServices();
                startCoreServices();
                startOtherServices();
            } catch (Throwable ex) {
                Slog.e("System", "******************************************");
                Slog.e("System", "************ Failure starting system services", ex);
                throw ex;
            }
    
            // For debug builds, log event loop stalls to dropbox for analysis.
            if (StrictMode.conditionallyEnableDebugLogging()) {
                Slog.i(TAG, "Enabled StrictMode for system server main thread.");
            }
    
            // Loop forever.
            Looper.loop();  // 启动线程循环,等待消息处理
            throw new RuntimeException("Main thread loop unexpectedly exited");
        }

    在这个 run 方法中,主要完毕三件事情。创建 system context 和 system service manager,启动一些系统服务。进入主线程消息循环。

    Zygote 的 fork 本地方法分析

    接下来我们细致分析 Zygote.forkSystemServer 与 Zygote.forkAndSpecialize 两个方法。

    forkSystemServer

        private static final ZygoteHooks VM_HOOKS = new ZygoteHooks();
    
        public static int forkSystemServer(int uid, int gid, int[] gids, int debugFlags,
                int[][] rlimits, long permittedCapabilities, long effectiveCapabilities) {
            VM_HOOKS.preFork();
            int pid = nativeForkSystemServer(
                    uid, gid, gids, debugFlags, rlimits, permittedCapabilities, effectiveCapabilities);
            VM_HOOKS.postForkCommon();
            return pid;
        }

    在调用 nativeForkSystemServer 创建 system_server 进程之前与之后,都会调用 ZygoteHooks 进行一些前置与后置处理。

    ZygoteHooks.preFork

    前置处理 ZygoteHooks.preFork:

        public void preFork() {
            Daemons.stop();
            waitUntilAllThreadsStopped();
            token = nativePreFork();
        }

    Daemons.stop(); 停止虚拟机中一些守护线程操作:如引用队列、终接器、GC等

        public static void stop() {
            ReferenceQueueDaemon.INSTANCE.stop();
            FinalizerDaemon.INSTANCE.stop();
            FinalizerWatchdogDaemon.INSTANCE.stop();
            HeapTrimmerDaemon.INSTANCE.stop();
            GCDaemon.INSTANCE.stop();
        }

    waitUntilAllThreadsStopped 保证被 fork 的进程是单线程,这样能够确保通过 copyonwrite fork 出来的进程也是单线程。从而节省资源。

    与前面提到的在新建 system_server 进程中调用 closeServerSocket 关闭 sockect 有异曲同工之妙。

        /**
         * We must not fork until we're single-threaded again. Wait until /proc shows we're
         * down to just one thread.
         */
        private static void waitUntilAllThreadsStopped() {
            File tasks = new File("/proc/self/task");
            while (tasks.list().length > 1) {
                try {
                    // Experimentally, booting and playing about with a stingray, I never saw us
                    // go round this loop more than once with a 10ms sleep.
                    Thread.sleep(10);
                } catch (InterruptedException ignored) {
                }
            }
        }

    本地方法 nativePreFork 实如今 art/runtime/native/dalvik_system_ZygoteHooks.cc 中。

        static jlong ZygoteHooks_nativePreFork(JNIEnv* env, jclass) {
          Runtime* runtime = Runtime::Current();
          CHECK(runtime->IsZygote()) << "runtime instance not started with -Xzygote";
    
          runtime->PreZygoteFork();
    
          // Grab thread before fork potentially makes Thread::pthread_key_self_ unusable.
          Thread* self = Thread::Current();
          return reinterpret_cast<jlong>(self);
        }

    ZygoteHooks_nativePreFork 通过调用 Runtime::PreZygoteFork 来完毕 gc 堆的一些初始化,这部分代码在 art/runtime/runtime.cc 中:

        heap_ = new gc::Heap(...);
        void Runtime::PreZygoteFork() {
            heap_->PreZygoteFork();
        }

    创建 system_server 进程:

    nativeForkSystemServer 实如今 framework/base/core/jni/com_android_internal_os_Zygote.cpp 中:

        static jint com_android_internal_os_Zygote_nativeForkSystemServer(
                JNIEnv* env, jclass, uid_t uid, gid_t gid, jintArray gids,
                jint debug_flags, jobjectArray rlimits, jlong permittedCapabilities,
                jlong effectiveCapabilities) {
            pid_t pid = ForkAndSpecializeCommon(env, uid, gid, gids,
                            debug_flags, rlimits,
                            permittedCapabilities, effectiveCapabilities,
                            MOUNT_EXTERNAL_NONE, NULL, NULL, true, NULL,
                            NULL, NULL);
            if (pid > 0) {
                // The zygote process checks whether the child process has died or not.
                ALOGI("System server process %d has been created", pid);
                gSystemServerPid = pid;
                // There is a slight window that the system server process has crashed
                // but it went unnoticed because we haven't published its pid yet. So
                // we recheck here just to make sure that all is well.
                int status;
                if (waitpid(pid, &status, WNOHANG) == pid) {
                    ALOGE("System server process %d has died. Restarting Zygote!", pid);
                    RuntimeAbort(env);
                }
            }
            return pid;
        }

    它转调 ForkAndSpecializeCommon 来创建新进程。并确保 system_server 创建成功,若不成功便成仁:重新启动 zygote。由于没有 system_server 就干不了什么事情。ForkAndSpecializeCommon 实现例如以下:

        static const char kZygoteClassName[] = "com/android/internal/os/Zygote";
        gZygoteClass = (jclass) env->NewGlobalRef(env->FindClass(kZygoteClassName));
        gCallPostForkChildHooks = env->GetStaticMethodID(gZygoteClass, "callPostForkChildHooks",
                                               "(ILjava/lang/String;)V");
    
        // Utility routine to fork zygote and specialize the child process.
        static pid_t ForkAndSpecializeCommon(JNIEnv* env, uid_t uid, gid_t gid, jintArray javaGids,
                         jint debug_flags, jobjectArray javaRlimits,
                         jlong permittedCapabilities, jlong effectiveCapabilities,
                         jint mount_external,
                         jstring java_se_info, jstring java_se_name,
                         bool is_system_server, jintArray fdsToClose,
                         jstring instructionSet, jstring dataDir)
        {
            SetSigChldHandler();
    
            pid_t pid = fork();
    
            if (pid == 0) {
                // The child process.
                ...
                rc = selinux_android_setcontext(uid, is_system_server, se_info_c_str, se_name_c_str);
                ...
                UnsetSigChldHandler();
                ...
                env->CallStaticVoidMethod(gZygoteClass, gCallPostForkChildHooks, debug_flags,
                              is_system_server ? NULL : instructionSet);
            }
            else if (pid > 0) {
                // the parent process
            }
    
            return pid;
        }

    ForkAndSpecializeCommon 首先设置子进程异常处理handler,然后 fork 新进程。在新进程中设置 SELinux,并清除它的子进程异常处理 handler,然后调用 Zygote.callPostForkChildHooks 方法。

        private static void callPostForkChildHooks(int debugFlags, String instructionSet) {
            long startTime = SystemClock.elapsedRealtime();
            VM_HOOKS.postForkChild(debugFlags, instructionSet);
            checkTime(startTime, "Zygote.callPostForkChildHooks");
        }

    callPostForkChildHooks 又转调 ZygoteHooks.postForkChild :

        public void postForkChild(int debugFlags, String instructionSet) {
            nativePostForkChild(token, debugFlags, instructionSet);
        }

    本地方法 nativePostForkChild 又进到 dalvik_system_ZygoteHooks.cc 中:

        static void ZygoteHooks_nativePostForkChild(JNIEnv* env, jclass, jlong token, jint debug_flags,
                                                jstring instruction_set) {
            Thread* thread = reinterpret_cast<Thread*>(token);
            // Our system thread ID, etc, has changed so reset Thread state.
            thread->InitAfterFork();
            EnableDebugFeatures(debug_flags);
    
            if (instruction_set != nullptr) {
                ScopedUtfChars isa_string(env, instruction_set);
                InstructionSet isa = GetInstructionSetFromString(isa_string.c_str());
                Runtime::NativeBridgeAction action = Runtime::NativeBridgeAction::kUnload;
                if (isa != kNone && isa != kRuntimeISA) {
                    action = Runtime::NativeBridgeAction::kInitialize;
                }
                Runtime::Current()->DidForkFromZygote(env, action, isa_string.c_str());
            } else {
                Runtime::Current()->DidForkFromZygote(env, Runtime::NativeBridgeAction::kUnload, nullptr);
            }
        }

    thread->InitAfterFork(); 实如今 art/runtime/thread.cc 中,设置新进程主线程的线程id: tid。DidForkFromZygote 实如今 Runtime.cc 中:

        void Runtime::DidForkFromZygote(JNIEnv* env, NativeBridgeAction action, const char* isa) {
            is_zygote_ = false;
    
            switch (action) {
            case NativeBridgeAction::kUnload:
                UnloadNativeBridge();
                break;
    
            case NativeBridgeAction::kInitialize:
                InitializeNativeBridge(env, isa);
                break;
            }
    
            // Create the thread pool.
            heap_->CreateThreadPool();
    
            StartSignalCatcher();
    
            // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
            // this will pause the runtime, so we probably want this to come last.
            Dbg::StartJdwp();
        }

    首先依据 action 參数来卸载或转载用于跨平台桥接用的库。然后启动 gc 堆的线程池。StartSignalCatcher 设置信号 处理 handler,其代码在 signal_catcher.cc 中。

    ZygoteHooks.postForkCommon

    后置处理 ZygoteHooks.postForkCommon:

        public void postForkCommon() {
            Daemons.start();
        }

    postForkCommon 转调 Daemons.start,以初始化虚拟机中引用队列、终接器以及 gc 的守护线程。

        public static void start() {
            ReferenceQueueDaemon.INSTANCE.start();
            FinalizerDaemon.INSTANCE.start();
            FinalizerWatchdogDaemon.INSTANCE.start();
            HeapTrimmerDaemon.INSTANCE.start();
            GCDaemon.INSTANCE.start();
        }

    forkAndSpecialize

    Zygote.forkAndSpecialize 方法

        public static int forkAndSpecialize(int uid, int gid, int[] gids, int debugFlags,
              int[][] rlimits, int mountExternal, String seInfo, String niceName, int[] fdsToClose,
              String instructionSet, String appDataDir) {
            long startTime = SystemClock.elapsedRealtime();
            VM_HOOKS.preFork();
            checkTime(startTime, "Zygote.preFork");
            int pid = nativeForkAndSpecialize(
                      uid, gid, gids, debugFlags, rlimits, mountExternal, seInfo, niceName, fdsToClose,
                      instructionSet, appDataDir);
            checkTime(startTime, "Zygote.nativeForkAndSpecialize");
            VM_HOOKS.postForkCommon();
            checkTime(startTime, "Zygote.postForkCommon");
            return pid;
        }

    前置处理与后置处理与 forkSystemServer 中一样的,这里就跳过不讲了。本地方法 nativeForkAndSpecialize 实如今 framework/base/core/jni/com_android_internal_os_Zygote.cpp 中:

    static jint com_android_internal_os_Zygote_nativeForkAndSpecialize(
            JNIEnv* env, jclass, jint uid, jint gid, jintArray gids,
            jint debug_flags, jobjectArray rlimits,
            jint mount_external, jstring se_info, jstring se_name,
            jintArray fdsToClose, jstring instructionSet, jstring appDataDir) {
        // Grant CAP_WAKE_ALARM to the Bluetooth process.
        jlong capabilities = 0;
        if (uid == AID_BLUETOOTH) {
            capabilities |= (1LL << CAP_WAKE_ALARM);
        }
    
        return ForkAndSpecializeCommon(env, uid, gid, gids, debug_flags,
                rlimits, capabilities, capabilities, mount_external, se_info,
                se_name, false, fdsToClose, instructionSet, appDataDir);
    }

    这个函数与 com_android_internal_os_Zygote_nativeForkSystemServer 非常相似,仅仅只是少了一个确保子进程创建成功的步骤。

  • 相关阅读:
    文件上传到服务器,写入文件和读取文件
    ajax
    jquery.gritter 提示
    lambda
    C# 对象初始化器和集合初始化器
    C# HttpHelper万能框架实现 接口
    插件总结
    backbone.js之Model篇 简单总结和深入(2)
    backBone.js初识
    利用 bugly 分析应用崩溃
  • 原文地址:https://www.cnblogs.com/gccbuaa/p/7244857.html
Copyright © 2020-2023  润新知