flyfish 2015-7-21
函数的渐近增长:给定两个函数f(n)和g(n)。假设存在一个整数N。使得对于全部的n > N,f(n)总是比g(n)大,那么,我们说f(n)的增长渐近快于g(n)。
算法时间复杂度定义
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数。进而分析T(n)随n的变化情况并确定T(n)的数量级。
算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。
它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率同样。称作算法的渐近时间复杂度,简称为时间复杂度。
当中f(n)是问题规模n的某个函数。
这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法。 普通情况下,随着n的增大。T(n)增长最慢的算法为最优算法。
推导大O阶:
1.用常数1代替执行时间中的全部加法常数。
2.在改动后的执行次数函数中。仅仅保留最高阶项。
3.假设最高阶项存在且不是1,则去除与这个项相乘的常数。
得到的结果就是大O阶。
经常使用的时间复杂度所耗费的时间从小到大依次是
O(1) < O(
以上引用自《大话数据结构》
渐近分析
考虑算法在输入规模趋向无穷时的效率分析就是渐近分析。
渐近分析就是:忽略详细机器、编程或编译器的影响,仅仅观察在输入尺寸n取趋向无穷时算法效率的表现.
O、Ω、Θ表示
O 想象成
Ω 想象成
Θ 想象成
以上引用自《算法之道》
Θ(g(n))={
O(g(n))={
Ω(g(n))={
o(g(n))={
ω(g(n))={
以上引用自《算法导论》
Ω : omega 美[o’mɛɡə]希腊字母表的最后一个字
Θ: theta 美[‘θitə] 希蜡字母的第八字