• cartographer时间相关知识点


     1 #include <chrono>
     2 #include <ostream>
     3 #include <ratio>
     4 
     5 #include "cartographer/common/port.h"
     6 
     7 namespace cartographer {
     8 namespace common {
     9 
    10 constexpr int64 kUtsEpochOffsetFromUnixEpochInSeconds =
    11     (719162ll * 24ll * 60ll * 60ll);//719162ll/365=1970.3
    12 
    13 struct UniversalTimeScaleClock {
    14   using rep = int64;
    15   using period = std::ratio<1, 10000000>;//单位10ns
    16   using duration = std::chrono::duration<rep, period>;
    17   using time_point = std::chrono::time_point<UniversalTimeScaleClock>;
    18   static constexpr bool is_steady = true;
    19 };
    20 
    21 // Represents Universal Time Scale durations and timestamps which are 64-bit
    22 // integers representing the 100 nanosecond ticks since the Epoch which is
    23 // January 1, 1 at the start of day in UTC.
    24 using Duration = UniversalTimeScaleClock::duration;
    25 using Time = UniversalTimeScaleClock::time_point;
    26 
    27 // Convenience functions to create common::Durations.
    28 Duration FromSeconds(double seconds);
    29 Duration FromMilliseconds(int64 milliseconds);
    30 
    31 // Returns the given duration in seconds.
    32 double ToSeconds(Duration duration);
    33 double ToSeconds(std::chrono::steady_clock::duration duration);
    34 
    35 // Creates a time from a Universal Time Scale.
    36 Time FromUniversal(int64 ticks);
    37 
    38 // Outputs the Universal Time Scale timestamp for a given Time.
    39 int64 ToUniversal(Time time);
    40 
    41 // For logging and unit tests, outputs the timestamp integer.
    42 std::ostream& operator<<(std::ostream& os, Time time);
    43 
    44 // CPU time consumed by the thread so far, in seconds.
    45 double GetThreadCpuTimeSeconds();
    46 
    47 }  // namespace common
    48 }  // namespace cartographer

    下面对上面的代码进行解释:

    1、第一行的头文件#include <chrono>

    在C++11中,<chrono>是标准模板库中与时间有关的头文件。该头文件中所有函数与类模板均定义在std::chrono命名空间中。

    std::chrono::duration:记录时间长度,表示一段时间,如1分钟、2小时、10毫秒等。表示为类模板duration的对象,用一个count representation与一个period precision表示。例如,10毫秒的10为count representation,毫秒为period precision。

    第一个模板参数为表示时间计数的数据类型。成员函数count返回该计数。第二个模板参数表示计数的一个周期,一般是std::ratio类型,表示一个周期(即一个时间滴答tick)是秒钟的倍数或分数,在编译时应为一个有理常量。

    std::chrono::time_point:记录时间点的,表示一个具体的时间。例如某人的生日、今天的日出时间等。表示为类模板time_point的对象。用相对于一个固定时间点epoch的duration来表示

    std::chrono::clocks:时间点相对于真实物理时间的框架。至少提供了3个clock:

    1)system_clock:当前系统范围(即对各进程都一致)的一个实时的日历时钟(Wallclock)。

    2)steady_clock:当前系统实现的一个维定时钟,该时钟的每个时间滴答单位是均匀的(即长度相等)。

    3)high_resolution_clock:当前系统实现的一个高分辨率时钟。

    #include <chrono>  
    #include <iostream>  
    #include <ratio>  
    #include <ctime>  
    #include <iomanip>  
      
    ///////////////////////////////////////////////////////////////  
    // reference: http://www.cplusplus.com/reference/chrono/duration/  
    int test_chrono_duration()  
    {
    
    { // duration::duration: Constructs a duration object  
      // chrono::duration_cast: Converts the value of dtn into some other duration type,  
      // taking into account differences in their periods  
        typedef std::chrono::duration<int> seconds_type;  //template<typename _Rep, typename _Period> struct duration,前面是类型,后面是单位
        typedef std::chrono::duration<int, std::milli> milliseconds_type;//typedef ratio<1,                      1000> milli;
        typedef std::chrono::duration<int, std::ratio<60 * 60>> hours_type; //template<intmax_t _Num, intmax_t _Den = 1>,分母默认值为1
      
        hours_type h_oneday(24);                  // 24h  
        seconds_type s_oneday(60 * 60 * 24);          // 86400s  
        milliseconds_type ms_oneday(s_oneday);    // 86400000ms  
      
        seconds_type s_onehour(60 * 60);            // 3600s  
        //hours_type h_onehour (s_onehour);          // NOT VALID (type truncates), use:  
        hours_type h_onehour(std::chrono::duration_cast<hours_type>(s_onehour));  
        milliseconds_type ms_onehour(s_onehour);  // 3600000ms (ok, no type truncation)  
      
        std::cout << ms_onehour.count() << "ms in 1h" << std::endl;  
    }  
      
    { // duration operators: +、-、*、/、>、<、!=、and so on  
        std::chrono::duration<int> foo;  //默认单位都是秒
        std::chrono::duration<int> bar(10);  
      
        // counts: foo bar  
        //         --- ---  
        foo = bar;                 // 10  10  
        foo = foo + bar;           // 20  10  
        ++foo;                     // 21  10  
        --bar;                     // 21   9  
        foo *= 2;                  // 42   9  
        foo /= 3;                  // 14   9  
        //bar +=  (foo % bar);      // 14  14  
      
        std::cout << std::boolalpha;  
        std::cout << "foo==bar: " << (foo == bar) << std::endl;  
        std::cout << "foo: " << foo.count() << std::endl;  
        std::cout << "bar: " << bar.count() << std::endl;  
    }  
      
    { // duration::count: Returns the internal count (i.e., the representation value) of the duration object.  
        using namespace std::chrono;  
        // std::chrono::milliseconds is an instatiation of std::chrono::duration:  
        milliseconds foo(1000); // 1 second  
        foo *= 60;  
      
        std::cout << "duration (in periods): ";  
        std::cout << foo.count() << " milliseconds.
    ";  
      
        std::cout << "duration (in seconds): ";  
        std::cout << foo.count() * milliseconds::period::num / milliseconds::period::den;  
        std::cout << " seconds.
    ";  
    }  
      
    { // duration::max: Returns the maximum value of duration  
      // duration::min: Returns the minimum value of duration  
        std::cout << "system_clock durations can represent:
    ";  
        std::cout << "min: " << std::chrono::system_clock::duration::min().count() << "
    ";  
        std::cout << "max: " << std::chrono::system_clock::duration::max().count() << "
    ";  
    }  
      
    { // duration::zero: Returns a duration value of zero  
        using std::chrono::steady_clock;  
      
        steady_clock::time_point t1 = steady_clock::now();  
      
        std::cout << "Printing out something...
    ";  
      
        steady_clock::time_point t2 = steady_clock::now();  
      
        steady_clock::duration d = t2 - t1;  
      
        if (d == steady_clock::duration::zero())  
            std::cout << "The internal clock did not tick.
    ";  
        else  
            std::cout << "The internal clock advanced " << d.count() << " periods.
    ";  
    }  
      
    { // chrono::time_point_cast: Converts the value of tp into a time_point type with a different duration internal object,  
      // taking into account differences in their durations's periods.  
        using namespace std::chrono;  
      
        typedef duration<int, std::ratio<60 * 60 * 24>> days_type;  
      
        time_point<system_clock, days_type> today = time_point_cast<days_type>(system_clock::now());  
      
        std::cout << today.time_since_epoch().count() << " days since epoch" << std::endl;  
    }  
      
        return 0;  
    }  
      
    //////////////////////////////////////////////////////////////////  
    // reference: http://www.cplusplus.com/reference/chrono/high_resolution_clock/  
    int test_chrono_high_resolution_clock()  
    {  
        // high_resolution_clock::now: Returns the current time_point in the frame of the high_resolution_clock  
        using namespace std::chrono;  
      
        high_resolution_clock::time_point t1 = high_resolution_clock::now();  
      
        std::cout << "printing out 1000 stars...
    ";  
        for (int i = 0; i<1000; ++i) std::cout << "*";  
        std::cout << std::endl;  
      
        high_resolution_clock::time_point t2 = high_resolution_clock::now();  
      
        duration<double> time_span = duration_cast<duration<double>>(t2 - t1);  
      
        std::cout << "It took me " << time_span.count() << " seconds.";  
        std::cout << std::endl;  
      
        return 0;  
    }  
      
    ///////////////////////////////////////////////////////////////////////  
    // reference: http://www.cplusplus.com/reference/chrono/steady_clock/  
    int test_chrono_steady_clock()  
    {  
        // steady_clock is specifically designed to calculate time intervals.  
        // steady_clock::now: Returns the current time_point in the frame of the steady_clock.  
        using namespace std::chrono;  
      
        steady_clock::time_point t1 = steady_clock::now();  
      
        std::cout << "printing out 1000 stars...
    ";  
        for (int i = 0; i<1000; ++i) std::cout << "*";  
        std::cout << std::endl;  
      
        steady_clock::time_point t2 = steady_clock::now();  
      
        duration<double> time_span = duration_cast<duration<double>>(t2 - t1);  
      
        std::cout << "It took me " << time_span.count() << " seconds.";  
        std::cout << std::endl;  
      
        return 0;  
    }  
      
    //////////////////////////////////////////////////////////////  
    // reference: http://www.cplusplus.com/reference/chrono/system_clock/  
    int test_chrono_system_clock()  
    {  
        // system_clock is a system-wide realtime clock.  
      
    { // system_clock::from_time_t: Converts t into its equivalent of member type time_point.  
        using namespace std::chrono;  
      
        // create tm with 1/1/2000:  
        std::tm timeinfo = std::tm();  
        timeinfo.tm_year = 100;   // year: 2000  
        timeinfo.tm_mon = 0;      // month: january  
        timeinfo.tm_mday = 1;     // day: 1st  
        std::time_t tt = std::mktime(&timeinfo);  
      
        system_clock::time_point tp = system_clock::from_time_t(tt);  
        system_clock::duration d = system_clock::now() - tp;  
      
        // convert to number of days:  
        typedef duration<int, std::ratio<60 * 60 * 24>> days_type;  
        days_type ndays = duration_cast<days_type> (d);  
      
        // display result:  
        std::cout << ndays.count() << " days have passed since 1/1/2000";  
        std::cout << std::endl;  
    }  
      
    { // system_clock::now: Returns the current time_point in the frame of the system_clock  
        using namespace std::chrono;  
      
        duration<int, std::ratio<60 * 60 * 24> > one_day(1);  
      
        system_clock::time_point today = system_clock::now();  
        system_clock::time_point tomorrow = today + one_day;  
      
        time_t tt;  
      
        tt = system_clock::to_time_t(today);  
        std::cout << "today is: " << ctime(&tt);  
      
        tt = system_clock::to_time_t(tomorrow);  
        std::cout << "tomorrow will be: " << ctime(&tt);  
    }  
      
    { // system_clock::to_time_t: Converts tp into its equivalent of type time_t.  
        using namespace std::chrono;  
      
        duration<int, std::ratio<60 * 60 * 24> > one_day(1);  
      
        system_clock::time_point today = system_clock::now();  
        system_clock::time_point tomorrow = today + one_day;  
      
        time_t tt;  
      
        tt = system_clock::to_time_t(today);  
        std::cout << "today is: " << ctime(&tt);  
      
        tt = system_clock::to_time_t(tomorrow);  
        std::cout << "tomorrow will be: " << ctime(&tt);  
    }  
      
        return 0;  
    }  
      
    //////////////////////////////////////////////////////  
    // reference: http://www.cplusplus.com/reference/chrono/time_point/  
    int test_chrono_time_point()  
    {  
    { // time_point operators: +、-、==、!=  
        using namespace std::chrono;  
      
        system_clock::time_point tp, tp2;                // epoch value  
        system_clock::duration dtn(duration<int>(1));  // 1 second  
      
        //  tp     tp2    dtn  
        //  ---    ---    ---  
        tp += dtn;          //  e+1s   e      1s  
        tp2 -= dtn;         //  e+1s   e-1s   1s  
        tp2 = tp + dtn;     //  e+1s   e+2s   1s  
        tp = dtn + tp2;     //  e+3s   e+2s   1s  
        tp2 = tp2 - dtn;    //  e+3s   e+1s   1s  
        dtn = tp - tp2;     //  e+3s   e+1s   2s  
      
        std::cout << std::boolalpha;  
        std::cout << "tp == tp2: " << (tp == tp2) << std::endl;  
        std::cout << "tp > tp2: " << (tp>tp2) << std::endl;  
        std::cout << "dtn: " << dtn.count() << std::endl;  
    }  
      
    { // time_point::time_point: Constructs a time_point object  
        using namespace std::chrono;  
      
        system_clock::time_point tp_epoch;  // epoch value  
      
        time_point <system_clock, duration<int>> tp_seconds(duration<int>(1));  
      
        system_clock::time_point tp(tp_seconds);  
      
        std::cout << "1 second since system_clock epoch = ";  
        std::cout << tp.time_since_epoch().count();  
        std::cout << " system_clock periods." << std::endl;  
      
        // display time_point:  
        std::time_t tt = system_clock::to_time_t(tp);  
        std::cout << "time_point tp is: " << ctime(&tt);  
    }  
      
    { // time_point::time_since_epoch: Returns a duration object with the time span value between the epoch and the time point  
        using namespace std::chrono;  
      
        system_clock::time_point tp = system_clock::now();  
        system_clock::duration dtn = tp.time_since_epoch();  
      
        std::cout << "current time since epoch, expressed in:" << std::endl;  
        std::cout << "periods: " << dtn.count() << std::endl;  
        std::cout << "seconds: " << dtn.count() * system_clock::period::num / system_clock::period::den;  
        std::cout << std::endl;  
    }  
      
        return 0;  
    }  
      
    ///////////////////////////////////////////////////////////////////  
    // reference: https://zh.wikibooks.org/wiki/C%2B%2B/STL/Chrono  
    static long fibonacci(unsigned n)  
    {  
        if (n < 2) return n;  
        return fibonacci(n - 1) + fibonacci(n - 2);  
    }  
      
    int test_chrono_1()  
    {  
    { // std::chrono::time_point  
        std::chrono::system_clock::time_point now = std::chrono::system_clock::now();  
        std::time_t now_c = std::chrono::system_clock::to_time_t(now - std::chrono::hours(24));  
        std::cout << "24 hours ago, the time was " << now_c << '
    ';  
      
        std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();  
        std::cout << "Hello World
    ";  
        std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();  
        std::cout << "Printing took "  
            << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << "us.
    ";  
    }  
      
    { // std::chrono::duration  
        using shakes = std::chrono::duration<int, std::ratio<1, 100000000>>;  
        using jiffies = std::chrono::duration<int, std::centi>;  
        using microfortnights = std::chrono::duration<float, std::ratio<12096, 10000>>;  
        using nanocenturies = std::chrono::duration<float, std::ratio<3155, 1000>>;  
      
        std::chrono::seconds sec(1);  
      
        std::cout << "1 second is:
    ";  
      
        std::cout << std::chrono::duration_cast<shakes>(sec).count() << " shakes
    ";  
        std::cout << std::chrono::duration_cast<jiffies>(sec).count() << " jiffies
    ";  
        std::cout << microfortnights(sec).count() << " microfortnights
    ";  
        std::cout << nanocenturies(sec).count() << " nanocenturies
    ";  
    }  
      
    { //   
        std::chrono::time_point<std::chrono::system_clock> start, end;  
        start = std::chrono::system_clock::now();  
        std::cout << "f(42) = " << fibonacci(42) << '
    ';  
        end = std::chrono::system_clock::now();  
      
        std::chrono::duration<double> elapsed_seconds = end - start;  
        std::time_t end_time = std::chrono::system_clock::to_time_t(end);  
      
        std::cout << "finished computation at " << std::ctime(&end_time)  
            << "elapsed time: " << elapsed_seconds.count() << "s
    ";  
    }  
        return 0;  
    }  
    
    int main(int argc, char** argv)
    {
    
    test_chrono_duration();
    return 0;
    }
    View Code

    看一下时间点,参考其他博客,再次写一下chrono相关的知识

    chrono是一个time library, 源于boost,现在已经是C++标准。话说今年似乎又要出新标准了,好期待啊! 

      要使用chrono库,需要#include<chrono>,其所有实现均在std::chrono namespace下。注意标准库里面的每个命名空间代表了一个独立的概念。所以下文中的概念均以命名空间的名字表示! chrono是一个模版库,使用简单,功能强大,只需要理解三个概念:duration、time_point、clock

    1)、

    Durations
    std::chrono::duration 表示一段时间,比如两个小时,12.88秒,半个时辰,一炷香的时间等等,只要能换算成秒即可。
    template <class Rep, class Period = ratio<1> > class duration;
    其中
    Rep表示一种数值类型,用来表示Period的数量,比如int float double
    Period是ratio类型,用来表示【用秒表示的时间单位】比如second milisecond
    常用的duration<Rep,Period>已经定义好了,在std::chrono::duration下:
    ratio<3600, 1>                hours
    ratio<60, 1>                    minutes
    ratio<1, 1>                      seconds
    ratio<1, 1000>               microseconds
    ratio<1, 1000000>         microseconds
    ratio<1, 1000000000>    nanosecons
     
    这里需要说明一下ratio这个类模版的原型:
    template <intmax_t N, intmax_t D = 1> class ratio;
    N代表分子,D代表分母,所以ratio表示一个分数值。
    注意,我们自己可以定义Period,比如ratio<1, -2>表示单位时间是-0.5秒。

    由于各种duration表示不同,chrono库提供了duration_cast类型转换函数。

    1 template <class ToDuration, class Rep, class Period>
    2   constexpr ToDuration duration_cast (const duration<Rep,Period>& dtn);

    典型用法:

    // duration constructor
    #include <iostream>
    #include <ratio>
    #include <chrono>
    
    int main ()
    {
      typedef std::chrono::duration<int> seconds_type;
      typedef std::chrono::duration<int,std::milli> milliseconds_type;
      typedef std::chrono::duration<int,std::ratio<60*60>> hours_type;
    
      hours_type h_oneday (24);                  // 24h
      seconds_type s_oneday (60*60*24);          // 86400s
      milliseconds_type ms_oneday (s_oneday);    // 86400000ms
    
      seconds_type s_onehour (60*60);            // 3600s
    //hours_type h_onehour (s_onehour);          // NOT VALID (type truncates), use:
      hours_type h_onehour (std::chrono::duration_cast<hours_type>(s_onehour));
      milliseconds_type ms_onehour (s_onehour);  // 3600000ms (ok, no type truncation)
    
      std::cout << ms_onehour.count() << "ms in 1h" << std::endl;
    
      return 0;
    }
    
    duration还有一个成员函数count()返回Rep类型的Period数量,看代码:
    
    // duration::count
    #include <iostream>     // std::cout
    #include <chrono>       // std::chrono::seconds, std::chrono::milliseconds
                            // std::chrono::duration_cast
    
    int main ()
    {
      using namespace std::chrono;
      // std::chrono::milliseconds is an instatiation of std::chrono::duration:
      milliseconds foo (1000); // 1 second
      foo*=60;
    
      std::cout << "duration (in periods): ";
      std::cout << foo.count() << " milliseconds.
    ";
    
      std::cout << "duration (in seconds): ";
      std::cout << foo.count() * milliseconds::period::num / milliseconds::period::den;
      std::cout << " seconds.
    ";
    
      return 0;
    }
    View Code

    2)Time points

    std::chrono::time_point表示一个具体时间,如上个世纪80年代、你的生日、今天下午、火车出发时间等,只要它能用计算机时钟表示。鉴于我们使用时间的情景不同,这个time point具体到什么程度,由选用的单位决定一个time point必须有一个clock计时

    template<class Clock, class Duration = typename Clock::duration> class time_point;

    下面是构造使用time_point的例子

    // time_point constructors
    #include <iostream>
    #include <chrono>
    #include <ctime>
    
    int main ()
    {
      using namespace std::chrono;
    
      system_clock::time_point tp_epoch;    // epoch value
    
      time_point <system_clock,duration<int>> tp_seconds (duration<int>(1));
    
      system_clock::time_point tp (tp_seconds);
    
      std::cout << "1 second since system_clock epoch = ";
      std::cout << tp.time_since_epoch().count();
      std::cout << " system_clock periods." << std::endl;
    
      // display time_point:
      std::time_t tt = system_clock::to_time_t(tp);
      std::cout << "time_point tp is: " << ctime(&tt);
    
      return 0;
    }
    View Code
    time_point有一个函数time_from_eproch()用来获得1970年1月1日到time_point时间经过的duration。
    举个例子,如果timepoint以天为单位,函数返回的duration就以天为单位。
     
    由于各种time_point表示方式不同,chrono也提供了相应的转换函数 time_point_cast。
    1 template <class ToDuration, class Clock, class Duration>
    2   time_point<Clock,ToDuration> time_point_cast (const time_point<Clock,Duration>& tp);
    / time_point_cast
    #include <iostream>
    #include <ratio>
    #include <chrono>
    
    int main ()
    {
      using namespace std::chrono;
    
      typedef duration<int,std::ratio<60*60*24>> days_type;
    
      time_point<system_clock,days_type> today = time_point_cast<days_type>(system_clock::now());
    
      std::cout << today.time_since_epoch().count() << " days since epoch" << std::endl;
    
      return 0;
    }
    View Code

    3)clocks

    std::chrono::system_clock 它表示当前的系统时钟,系统中运行的所有进程使用now()得到的时间是一致的。
    每一个clock类中都有确定的time_point, duration, Rep, Period类型。
    操作有:
    now() 当前时间time_point
    to_time_t() time_point转换成time_t秒
    from_time_t() 从time_t转换成time_point
    典型的应用是计算时间日期:
    // system_clock example
    #include <iostream>
    #include <ctime>
    #include <ratio>
    #include <chrono>
    
    int main ()
    {
      using std::chrono::system_clock;
    
      std::chrono::duration<int,std::ratio<60*60*24> > one_day (1);
    
      system_clock::time_point today = system_clock::now();
      system_clock::time_point tomorrow = today + one_day;
    
      std::time_t tt;
    
      tt = system_clock::to_time_t ( today );
      std::cout << "today is: " << ctime(&tt);
    
      tt = system_clock::to_time_t ( tomorrow );
      std::cout << "tomorrow will be: " << ctime(&tt);
    
      return 0;
    }
    View Code

    std::chrono::steady_clock 为了表示稳定的时间间隔,后一次调用now()得到的时间总是比前一次的值大(这句话的意思其实是,如果中途修改了系统时间,也不影响now()的结果),每次tick都保证过了稳定的时间间隔。

    操作有:
    now() 获取当前时钟
    典型的应用是给算法计时:
    // steady_clock example
    #include <iostream>
    #include <ctime>
    #include <ratio>
    #include <chrono>
    
    int main ()
    {
      using namespace std::chrono;
    
      steady_clock::time_point t1 = steady_clock::now();
    
      std::cout << "printing out 1000 stars...
    ";
      for (int i=0; i<1000; ++i) std::cout << "*";
      std::cout << std::endl;
    
      steady_clock::time_point t2 = steady_clock::now();
    
      duration<double> time_span = duration_cast<duration<double>>(t2 - t1);
    
      std::cout << "It took me " << time_span.count() << " seconds.";
      std::cout << std::endl;
    
      return 0;
    }
    View Code

    最后一个时钟,std::chrono::high_resolution_clock 顾名思义,这是系统可用的最高精度的时钟。实际上high_resolution_clock只不过是system_clock或者steady_clock的typedef。

     

    2、第三行#include <ratio>

    其是在c++11中引入的,模板类std::ratio以及相关的模板类(如std::ratio_add)提供编译时有理数算术支持。

    此模板的每个实例化都准确表示任意有限有理数。他们都是用来表示比例关系的模板类。

    声明

    template<intmax_t N, intmax_t D = 1> class ratio;

    其中N表示分子,D表示分母;intmax_t表示最大的有符号整数类型,N和D的绝对值都应该在intmax_t可表示的范围内,D不能为0.

    std::ratio类一般不通过它的对象来表示,而是这个类型本身来表示的,但也可以通过它的对象来表示。std::ratio有两个成员常量:num表示的是分子,den表示的是分母。这里的num和den已经经过化简,因此输出值可能和定义时传入的不同,如typedef std::ratio<100, 10> ratio1, 输出值ratio1::num为10,ratio1::den为1,求其最大公约数。

    在include<ratio>中,除std::ratio外,还有编译时有理数算术:std::ratio_add、std::ratio_subtract、std::ratio_multiply、std::ratio_divide,它们和std::ratio一样,也都有两个成员常量:num和den。编译时有理数比较:std::ratio_equal、std::ratio_not_equal、std::ratio_less、std::ratio_less_equal、std::ratio_greater、std::ratio_greater_equal,它们都有value成员常量。它们的计算公式如下:

    template <typename R1, typename R2>
    using ratio_add = ratio < R1::num*R2::den+R2::num*R1::den, R1::den*R2::den >
     
    template <typename R1, typename R2>
    using ratio_subtract = std::ratio < R1::num*R2::den-R2::num*R1::den, R1::den*R2::den >
     
    template <typename R1, typename R2>
    using ratio_multiply = std::ratio < R1::num * R2::num, R1::den * R2::den >;
     
    template <typename R1, typename R2>
    using ratio_divide = ratio < R1::num * R2::den, R2::num * R1::den >;
     
    template <class R1, class R2>
    struct ratio_equal : integral_constant<bool, R1::num==R2::num && R1::den==R2::den> {}
     
    template <class R1, class R2>
    struct ratio_less : integral_constant < bool, R1::num*R2::den < R2::num*R1::den > {};
     
    template <class R1, class R2>
    struct ratio_greater : integral_constant < bool, ratio_less<R2,R1>::value > {};
     
    template <class R1, class R2>
    struct ratio_greater_equal : integral_constant < bool, !ratio_less<R1,R2>::value > {};
     
    template <class R1, class R2>
    struct ratio_less_equal : integral_constant < bool, !ratio_less<R2,R1>::value > {}
     
    template <class R1, class R2>
    struct ratio_equal : integral_constant < bool, !ratio_equal<R1,R2>::value > {};
    View Code

    #include "ratio.hpp"
    #include <iostream>
    #include <ratio>
     
    //
    // reference: http://www.cplusplus.com/reference/ratio/
    int test_ratio_1()
    {
        typedef std::ratio<1, 3> one_third;
        typedef std::ratio<2, 4> two_fourths;
        typedef std::ratio<2, 3> two_thirds;
        typedef std::ratio<1, 2> one_half;
     
        std::cout << "one_third= " << one_third::num << "/" << one_third::den << std::endl;
        std::cout << "two_fourths= " << two_fourths::num << "/" << two_fourths::den << std::endl; // Note: 1/2
        std::cout << "two_thirds= " << two_thirds::num << "/" << two_thirds::den << std::endl;
        std::cout << "one_half= " << one_half::num << "/" << one_half::den << std::endl;
        std::cout << std::endl;
     
    { // std::ratio
        typedef std::ratio_add<one_third, two_fourths> sum;
     
        std::cout << "sum= " << sum::num << "/" << sum::den;
        std::cout << " (which is: " << (double(sum::num) / sum::den) << ")" << std::endl;
        std::cout << "1 kilogram has " << (std::kilo::num / std::kilo::den) << " grams";
        std::cout << std::endl;
    }
     
    { // std::ratio_add
        typedef std::ratio_add<one_half, two_thirds> sum;
     
        std::cout << "sum = " << sum::num << "/" << sum::den;
        std::cout << " (which is: " << (double(sum::num) / sum::den) << ")" << std::endl;
    }
     
    { // std::ratio_subtract
        typedef std::ratio_subtract<two_thirds, one_half> diff;
     
        std::cout << "diff = " << diff::num << "/" << diff::den;
        std::cout << " (which is: " << (double(diff::num) / diff::den) << ")" << std::endl;
    }
     
    { // std::ratio_multiply
        typedef std::ratio_multiply<one_half, one_third> result;
     
        std::cout << "result = " << result::num << "/" << result::den;
        std::cout << " (which is: " << (double(result::num) / result::den) << ")" << std::endl;
    }
     
    { // std::ratio_divide
        typedef std::ratio_divide<one_half, one_third> result;
     
        std::cout << "result = " << result::num << "/" << result::den;
        std::cout << " (which is: " << (double(result::num) / result::den) << ")" << std::endl;
        std::cout << std::endl;
    }
     
    { // std::ratio_equal
        std::cout << "1/2 == 2/4 ? " << std::boolalpha;
        std::cout << std::ratio_equal<one_half, two_fourths>::value << std::endl;
    }
     
    { // std::ratio_greater
        std::cout << "1/3 > 1/2 ? " << std::boolalpha;
        std::cout << std::ratio_greater<one_third, one_half>::value << std::endl;
    }
     
    { // std::ratio_greater_equal
        std::cout << "1/3 >= 1/2 ? " << std::boolalpha;
        std::cout << std::ratio_greater_equal<one_third, one_half>::value << std::endl;
    }
     
    { // std::ratio_less
        std::cout << "1/3 < 1/2 ? " << std::boolalpha;
        std::cout << std::ratio_less<one_third, one_half>::value << std::endl;
    }
     
    { // std::ratio_less_equal
        std::cout << "1/3 <= 1/2 ? " << std::boolalpha;
        std::cout << std::ratio_less_equal<one_third, one_half>::value << std::endl;
    }
     
    { // std::ratio_not_equal
        std::cout << "1/2 != 2/4 ? " << std::boolalpha;
        std::cout << std::ratio_not_equal<one_half, two_fourths>::value << std::endl;
    }
        std::cout << std::endl;
     
        return 0;
    }
     
    /
    // reference: https://stackoverflow.com/questions/25005205/why-can-i-have-a-ratio-object-in-c
    int test_ratio_2()
    {
        // If you don't use a typedef you're creating an instance of std::ratio<1, 3> named one_third,
        // which is not suitable for passing as a type argument.In that case you'll need to use decltype
        // to get to the appropriate type that can be passed to ratio_add
        std::ratio<1, 3> one_third;
        std::ratio<2, 4> two_fourths;
        std::ratio_add<decltype(one_third), decltype(two_fourths)> sum;
        std::cout << decltype(sum)::den << std::endl;
     
        return 0;
    }
    View Code

    std::ratio<num, den> 定义分式

        std::ratio<60, 1> minutes;//<分子,分母>一分钟60秒
        std::ratio<60 * 60> hource;//1小时3600秒
        std::ratio<1, 1000> milliseconds; //1ms是1/1000秒

    chrono命名空间定义好的时间单位

    typedef duration <Rep, ratio<3600,1>> hours;
       typedef duration <Rep, ratio<60,1>> minutes;
       typedef duration <Rep, ratio<1,1>> seconds;
       typedef duration <Rep, ratio<1,1000>> milliseconds;
       typedef duration <Rep, ratio<1,1000000>> microseconds;
       typedef duration <Rep, ratio<1,1000000000>> nanoseconds;

    举例

    chrono::minutes mintu{2};//2分钟
        chrono::seconds sec{3};//3秒钟
        chrono::milliseconds mills{500};//500毫秒
        auto dul = sec - mills;//两者差值,单位默认转到更小的 2500ms
        dul.count(); //值为2500
        std::this_thread::sleep_for(std::chrono::milliseconds(100)); //当前线程休眠100毫秒

    time.cc

    #include "cartographer/common/time.h"
    
    #include <time.h>
    
    #include <cerrno>
    #include <cstring>
    #include <string>
    
    #include "glog/logging.h"
    
    namespace cartographer {
    namespace common {
    
    Duration FromSeconds(const double seconds) {
      return std::chrono::duration_cast<Duration>(
          std::chrono::duration<double>(seconds));
    }
    
    double ToSeconds(const Duration duration) {
      return std::chrono::duration_cast<std::chrono::duration<double>>(duration)
          .count();
    }
    
    double ToSeconds(const std::chrono::steady_clock::duration duration) {
      return std::chrono::duration_cast<std::chrono::duration<double>>(duration)
          .count();
    }
    
    Time FromUniversal(const int64 ticks) {
        //using duration = std::chrono::duration<rep, period>;
        //  using time_point = std::chrono::time_point<UniversalTimeScaleClock>;
        printf("ticks is %ld ", ticks);//add by gary
        printf("Duration'count is %lf ",Duration(ticks).count());
        printf("Time is %lf
    ",Time(Duration(ticks)).time_since_epoch().count());
        return Time(Duration(ticks));
    }
    
    int64 ToUniversal(const Time time) { return time.time_since_epoch().count(); }
    
    std::ostream& operator<<(std::ostream& os, const Time time) {
      os << std::to_string(ToUniversal(time));
      return os;
    }
    
    common::Duration FromMilliseconds(const int64 milliseconds) {
      return std::chrono::duration_cast<Duration>(
          std::chrono::milliseconds(milliseconds));
    }
    
    double GetThreadCpuTimeSeconds() {
    #ifndef WIN32
      struct timespec thread_cpu_time;
      CHECK(clock_gettime(CLOCK_THREAD_CPUTIME_ID, &thread_cpu_time) == 0)
          << std::strerror(errno);
      return thread_cpu_time.tv_sec + 1e-9 * thread_cpu_time.tv_nsec;
    #else
      return 0.;
    #endif
    }
    
    }  // namespace common
    }  // namespace cartographer
  • 相关阅读:
    SCA与spring集成(在spring中开发SOA)
    jdbc 预编译处理 和spring返回自增主键值
    JavaScript异步编程__“回调地狱”的一些解决方案
    高性能滚动 scroll 及页面渲染优化
    程序员如何学习英语
    基于JavaScript实现验证码功能
    HTML上传文件的多种方式
    WEB前端开发规范文档
    JavaScript跨域总结与解决办法
    学习使用:before和:after伪元素
  • 原文地址:https://www.cnblogs.com/gary-guo/p/13522545.html
Copyright © 2020-2023  润新知