• intermediate-python-for-data-science



    当前的学习也是调参的过程

    matplotlib

    plot

    # Print the last item of gdp_cap and life_exp
    print(gdp_cap)
    print(life_exp)
    
    # Make a line plot, gdp_cap on the x-axis, life_exp on the y-axis
    plt.plot(gdp_cap,life_exp)
    
    # Display the plot
    plt.show()
    

    Scatter Plot

    # Change the line plot below to a scatter plot
    plt.plot(gdp_cap, life_exp)
    
    # Put the x-axis on a logarithmic scale
    plt.scatter(gdp_cap, life_exp)
    plt.xscale('log')
    # Show plot
    plt.show()
    

    histogram

    # Create histogram of life_exp data
    plt.hist(life_exp)
    
    # Display histogram
    plt.show()
    
    # Build histogram with 5 bins
    plt.hist(life_exp,bins=5)
    # Show and clean up plot
    plt.show()
    plt.clf()
    
    

    Customization

    自定义绘图

    # Basic scatter plot, log scale
    plt.scatter(gdp_cap, life_exp)
    plt.xscale('log') 
    # Strings
    xlab = 'GDP per Capita [in USD]'
    ylab = 'Life Expectancy [in years]'
    title = 'World Development in 2007'
    # Add axis labels
    plt.xlabel(xlab )
    plt.ylabel(ylab)
    # Add title
    plt.title(title)
    # After customizing, display the plot
    plt.show()
    

    plt.xticks

    # Scatter plot
    plt.scatter(gdp_cap, life_exp)
    # Previous customizations
    plt.xscale('log') 
    plt.xlabel('GDP per Capita [in USD]')
    plt.ylabel('Life Expectancy [in years]')
    plt.title('World Development in 2007')
    # Definition of tick_val and tick_lab
    tick_val = [1000, 10000, 100000]
    tick_lab = ['1k', '10k', '100k']
    # Adapt the ticks on the x-axis
    plt.xticks(tick_val, tick_lab)
    # After customizing, display the plot
    plt.show()
    

    # Specify c and alpha inside plt.scatter()
    plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2,c=col,alpha=0.8)
    
    # Previous customizations
    plt.xscale('log') 
    plt.xlabel('GDP per Capita [in USD]')
    plt.ylabel('Life Expectancy [in years]')
    plt.title('World Development in 2007')
    plt.xticks([1000,10000,100000], ['1k','10k','100k'])
    # Show the plot
    plt.show()
    

    plt.test

    # Scatter plot
    plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8)
    
    # Previous customizations
    plt.xscale('log') 
    plt.xlabel('GDP per Capita [in USD]')
    plt.ylabel('Life Expectancy [in years]')
    plt.title('World Development in 2007')
    plt.xticks([1000,10000,100000], ['1k','10k','100k'])
    # Additional customizations
    plt.text(1550, 71, 'India')
    plt.text(5700, 80, 'China')
    # Add grid() call
    plt.grid(True)
    # Show the plot
    plt.show()
    

    Dictionaries, Part 1

    # Definition of countries and capital
    countries = ['spain', 'france', 'germany', 'norway']
    capitals = ['madrid', 'paris', 'berlin', 'oslo']
    
    # Get index of 'germany': ind_ger
    ind_ger=countries.index('germany')
    
    # Use ind_ger to print out capital of Germany
    print(capitals[ind_ger])
    

    Create dictionary

    # Definition of countries and capital
    countries = ['spain', 'france', 'germany', 'norway']
    capitals = ['madrid', 'paris', 'berlin', 'oslo']
    
    # From string in countries and capitals, create dictionary europe
    europe = { 'spain':'madrid','france':'paris', 'germany':'berlin', 'norway':'oslo' }
    
    # Print europe
    print(europe)
    

    dictionary keys

    可以直接用[]来取出key所对应的值

    # Definition of dictionary
    europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' }
    
    # Print out the keys in europe
    #直接调用keys方法
    print(europe.keys())
    
    # Print out value that belongs to key 'norway'
    print(europe['norway'])
    

    给已经存在的字典中继续增加元素

    # Definition of dictionary
    europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' }
    # Add italy to europe
    europe['italy']='rome'
    # Print out italy in europe
    print('italy' in europe) 
    # Add poland to europe
    europe['poland']='warsaw'
    # Print europe
    print(europe)
    

    添加删除键值对

    使用del删除

    # Definition of dictionary
    europe = {'spain':'madrid', 'france':'paris', 'germany':'bonn',
              'norway':'oslo', 'italy':'rome', 'poland':'warsaw',
              'australia':'vienna' }
    # Update capital of germany
    europe['germany']='berlin'
    # Remove australia
    #使用del函数直接删
    del(europe['australia'])
    # Print europe
    print(europe)
    

    筛选字典中的值

    # Dictionary of dictionaries
    europe = { 'spain': { 'capital':'madrid', 'population':46.77 },
               'france': { 'capital':'paris', 'population':66.03 },
               'germany': { 'capital':'berlin', 'population':80.62 },
               'norway': { 'capital':'oslo', 'population':5.084 } }
    # Print out the capital of France
    print(europe['france']['capital'])
    # Create sub-dictionary data
    data = { 'capital':'rome', 'population':59.83 }
    # Add data to europe under key 'italy'
    europe['italy'] = data
    # Print europe
    print(europe)
    

    pandas学习

    dataframe

    # Pre-defined lists
    names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt']
    dr =  [True, False, False, False, True, True, True]
    cpc = [809, 731, 588, 18, 200, 70, 45]
    # Import pandas as pd
    import pandas as pd
    # Create dictionary my_dict with three key:value pairs: my_dict
    my_dict = { 'country':names, 'drives_right':dr, 'cars_per_cap':cpc }
    # Build a DataFrame cars from my_dict: cars
    cars = pd.DataFrame(my_dict)
    # Print cars
    print(cars)
    <script.py> output:
           cars_per_cap        country  drives_right
        0           809  United States          True
        1           731      Australia         False
        2           588          Japan         False
        3            18          India         False
        4           200         Russia          True
        5            70        Morocco          True
        6            45          Egypt          True
    

    index

    在python中index是指数据框的行名

    import pandas as pd
    # Build cars DataFrame
    names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt']
    dr =  [True, False, False, False, True, True, True]
    cpc = [809, 731, 588, 18, 200, 70, 45]
    cars_dict = { 'country':names, 'drives_right':dr, 'cars_per_cap':cpc }
    cars = pd.DataFrame(cars_dict)
    print(cars)
    # Definition of row_labels
    row_labels = ['US', 'AUS', 'JPN', 'IN', 'RU', 'MOR', 'EG']
    # Specify row labels of cars
    cars.index=row_labels
    # Print cars again
    print(cars)
    

    pd.read_csv

    # Import pandas as pd
    import pandas as pd
    # Import the cars.csv data: cars
    cars=pd.read_csv("cars.csv")
    # Fix import by including index_col
    cars = pd.read_csv('cars.csv',index_col=0)
    # Print out cars
    print(cars)
    

    loc

    根据行名取行值

    iloc

    根据行的索引值

    # Import cars data
    import pandas as pd
    cars = pd.read_csv('cars.csv', index_col = 0)
    # Print out observation for Japan
    print(cars.iloc[2])
    #两种表示方法
    # Print out observations for Australia and Egypt
    print(cars.loc[['AUS', 'EG']])
    
    # Import cars data
    import pandas as pd
    cars = pd.read_csv('cars.csv', index_col = 0)
    # Print out drives_right value of Morocco
    print(cars.iloc[5,2])
    # Print sub-DataFrame
    print(cars.iloc[[4,5],[1,2]])
    

    []&[[]]

    # Import cars data
    import pandas as pd
    cars = pd.read_csv('cars.csv', index_col = 0)
    # Print out country column as Pandas Series
    print(cars["country"])
    # Print out country column as Pandas DataFrame
    print(cars[['country']])
    # Print out DataFrame with country and drives_right columns
    print(cars[['country','drives_right']])
    
    # Import cars data
    import pandas as pd
    cars = pd.read_csv('cars.csv', index_col = 0)
    # Print out first 3 observations
    print(cars[0:3])
    # Print out fourth, fifth and sixth observation
    print(cars[3:6])
    <script.py> output:
             cars_per_cap        country  drives_right
        US            809  United States          True
        AUS           731      Australia         False
        JPN           588          Japan         False
             cars_per_cap  country  drives_right
        IN             18    India         False
        RU            200   Russia          True
        MOR            70  Morocco          True
    

    提取数据框中的某一列

    # Import cars data
    import pandas as pd
    cars = pd.read_csv('cars.csv', index_col = 0)
    
    # Print out drives_right column as Series
    print(cars.iloc[:, 2])
    # Print out drives_right column as DataFrame
    print(cars.iloc[:, [2]])
    # Print out cars_per_cap and drives_right as DataFrame
    print(cars.loc[:, ['cars_per_cap', 'drives_right']])
    <script.py> output:
        US      True
        AUS    False
        JPN    False
        IN     False
        RU      True
        MOR     True
        EG      True
        Name: drives_right, dtype: bool
             drives_right
        US           True
        AUS         False
        JPN         False
        IN          False
        RU           True
        MOR          True
        EG           True
             cars_per_cap  drives_right
        US            809          True
        AUS           731         False
        JPN           588         False
        IN             18         False
        RU            200          True
        MOR            70          True
        EG             45          True
    

    Comparison Operators

    NUMPY中的逻辑运算符

    # Create arrays
    import numpy as np
    my_house = np.array([18.0, 20.0, 10.75, 9.50])
    your_house = np.array([14.0, 24.0, 14.25, 9.0])
    # my_house greater than 18.5 or smaller than 10
    print(np.logical_or(my_house > 18.5, my_house < 10))
    # Both my_house and your_house smaller than 11
    print(np.logical_and(my_house < 11, your_house < 11))
    

    Filtering Pandas DataFrame

    while循环语句

    # Initialize offset
    offset = -6
    
    # Code the while loop
    while offset != 0 :
        print("correcting...")
        if offset > 0 :
          offset=offset-1
        else : 
          offset=offset+1    
        print(offset)
    

    for loop

    # areas list
    areas = [11.25, 18.0, 20.0, 10.75, 9.50]
    
    # Change for loop to use enumerate() and update print()
    for index, area in enumerate(areas) :
        print("room " + str(index) + ": " + str(area))
    <script.py> output:
        room 0: 11.25
        room 1: 18.0
        room 2: 20.0
        room 3: 10.75
        room 4: 9.5
    

    遍历list

    # house list of lists
    house = [["hallway", 11.25], 
             ["kitchen", 18.0], 
             ["living room", 20.0], 
             ["bedroom", 10.75], 
             ["bathroom", 9.50]]
             
    # Build a for loop from scratch
    for x in house:
        print("the " + x[0] + " is " + str(x[1]) + " sqm")
    

    遍历数据框的每一行
    Iterating over a Pandas DataFrame is typically done with the iterrows() method. Used in a for loop, every observation is iterated over and on every iteration the row label and actual row contents are available:

    # Import cars data
    import pandas as pd
    cars = pd.read_csv('cars.csv', index_col = 0)
    
    # Iterate over rows of cars
    for lab, row in cars.iterrows() :
        print(lab)
        print(row)
    <script.py> output:
        US
        cars_per_cap              809
        country         United States
        drives_right             True
        Name: US, dtype: object
        AUS
        cars_per_cap          731
        country         Australia
        drives_right        False
        Name: AUS, dtype: object
        JPN
        cars_per_cap      588
        country         Japan
        drives_right    False
        Name: JPN, dtype: object
        IN
        cars_per_cap       18
        country         India
        drives_right    False
        Name: IN, dtype: object
        RU
        cars_per_cap       200
        country         Russia
        drives_right      True
        Name: RU, dtype: object
        MOR
        cars_per_cap         70
        country         Morocco
        drives_right       True
        Name: MOR, dtype: object
        EG
        cars_per_cap       45
        country         Egypt
        drives_right     True
        Name: EG, dtype: object
    

    增加列

    可以直接增加,也可以使用apply函数

    # Import cars data
    import pandas as pd
    cars = pd.read_csv('cars.csv', index_col = 0)
    
    # Use .apply(str.upper)
    cars["COUNTRY"] = cars["country"].apply(str.upper)
    
    # Import cars data
    import pandas as pd
    cars = pd.read_csv('cars.csv', index_col = 0)
    
    # Use .apply(str.upper)
    for lab, row in cars.iterrows() :
        cars.loc[lab, "COUNTRY"] = row["country"].upper()
    

    Random float

    随机数问题
    Randomness has many uses in science, art, statistics, cryptography, gaming, gambling, and other fields. You're going to use randomness to simulate a game.

    All the functionality you need is contained in the random package, a sub-package of numpy. In this exercise, you'll be using two functions from this package:

    • seed(): sets the random seed, so that your results are reproducible between simulations. As an argument, it takes an integer of your choosing. If you call the function, no output will be generated.
    • rand(): if you don't specify any arguments, it generates a random float between zero and one.
    # Import numpy as np
    import numpy as np
    
    # Set the seed
    np.random.seed(123)
    
    # Generate and print random float
    print(np.random.rand())
    

    random_walk

    # Numpy is imported, seed is set
    
    # Initialize random_walk
    random_walk = [0]
    
    # Complete the ___
    for x in range(100) :
        # Set step: last element in random_walk
        step = random_walk[-1]
    
        # Roll the dice
        dice = np.random.randint(1,7)
    
        # Determine next step
        if dice <= 2:
            step = step - 1
        elif dice <= 5:
            step = step + 1
        else:
            step = step + np.random.randint(1,7)
    
        # append next_step to random_walk
        random_walk.append(step)
    
    # Print random_walk
    print(random_walk)
    <script.py> output:
        [0, 3, 4, 5, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, -1, 0, 5, 4, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 7, 8, 9, 10, 11, 10, 14, 15, 14, 15, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 32, 33, 37, 38, 37, 38, 39, 38, 39, 40, 42, 43, 44, 43, 42, 43, 44, 43, 42, 43, 44, 46, 45, 44, 45, 44, 45, 46, 47, 49, 48, 49, 50, 51, 52, 53, 52, 51, 52, 51, 52, 53, 52, 55, 56, 57, 58, 57, 58, 59]
    
    

    distrubition

    transpose()

    转置函数

    np.random.randint()

    可以指定生成随机数组的维度
    参考

    看一个小的demo

    # numpy and matplotlib imported, seed set
    
    # Simulate random walk 250 times
    all_walks = []
    for i in range(250) :
        random_walk = [0]
        for x in range(100) :
            step = random_walk[-1]
            dice = np.random.randint(1,7)
            if dice <= 2:
                step = max(0, step - 1)
            elif dice <= 5:
                step = step + 1
            else:
                step = step + np.random.randint(1,7)
    
            # Implement clumsiness
            if np.random.rand() <= 0.001 :
                step = 0
    
            random_walk.append(step)
        all_walks.append(random_walk)
    
    # Create and plot np_aw_t
    np_aw_t = np.transpose(np.array(all_walks))
    plt.plot(np_aw_t)
    plt.show()
    
  • 相关阅读:
    docker创建nginx+php-fpm+mysql环境(一分钟搭建lnmp)
    dcoker搭建wordpress
    docker搭建mysql
    nginx负载均衡精简配置实例
    docker配置阿里云镜像加速
    Centos7 ssh配置RSA证书登录
    Dockerfile centos7_php5.6.36
    Dockerfile cnetos7_nginx1.15.10
    Dockerfile centos7_tomcat7.0.64_jdk7u80
    centos7 安装docker
  • 原文地址:https://www.cnblogs.com/gaowenxingxing/p/12148690.html
Copyright © 2020-2023  润新知