More Cowbell
Kevin Sun wants to move his precious collection of n cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into k boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.
Kevin is a meticulous cowbell collector and knows that the size of his i-th (1 ≤ i ≤ n) cowbell is an integer si. In fact, he keeps his cowbells sorted by size, so si - 1 ≤ si for any i > 1. Also an expert packer, Kevin can fit one or two cowbells into a box of size s if and only if the sum of their sizes does not exceed s. Given this information, help Kevin determine the smallest s for which it is possible to put all of his cowbells into k boxes of size s.
Input
The first line of the input contains two space-separated integers n and k (1 ≤ n ≤ 2·k ≤ 100 000), denoting the number of cowbells and the number of boxes, respectively.
The next line contains n space-separated integers s1, s2, ..., sn (1 ≤ s1 ≤ s2 ≤ ... ≤ sn ≤ 1 000 000), the sizes of Kevin's cowbells. It is guaranteed that the sizes si are given in non-decreasing order.
Output
Print a single integer, the smallest s for which it is possible for Kevin to put all of his cowbells into k boxes of size s.
Examples
2 1
2 5
7
4 3
2 3 5 9
9
3 2
3 5 7
8
Note
In the first sample, Kevin must pack his two cowbells into the same box.
In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}.
In the third sample, the optimal solution is {3, 5} and {7}.
sol:很显然答案是可以二分的,难点在于判断当前答案是否可行,一种较为容易想到的贪心,尽量用一个最大的配上一个最小的,易知一定是最优的
#include <bits/stdc++.h> using namespace std; typedef int ll; inline ll read() { ll s=0; bool f=0; char ch=' '; while(!isdigit(ch)) { f|=(ch=='-'); ch=getchar(); } while(isdigit(ch)) { s=(s<<3)+(s<<1)+(ch^48); ch=getchar(); } return (f)?(-s):(s); } #define R(x) x=read() inline void write(ll x) { if(x<0) { putchar('-'); x=-x; } if(x<10) { putchar(x+'0'); return; } write(x/10); putchar((x%10)+'0'); return; } #define W(x) write(x),putchar(' ') #define Wl(x) write(x),putchar(' ') const int N=100005; int n,m,a[N]; inline bool Judge(int mid) { int l=1,r=n,cnt=0; while(l<=r) { if(a[l]+a[r]<=mid) { cnt++; l++; r--; } else { cnt++; r--; } } return (cnt<=m)?1:0; } int main() { int i; R(n); R(m); for(i=1;i<=n;i++) R(a[i]); sort(a+1,a+n+1); int l=a[n],r=2000000; while(l<=r) { int mid=(l+r)>>1; if(Judge(mid)) r=mid-1; else l=mid+1; } Wl(l); return 0; } /* input 2 1 2 5 output 7 input 4 3 2 3 5 9 output 9 input 3 2 3 5 7 output 8 */