K-Means 概念定义:
K-Means 是一种基于距离的排他的聚类划分方法。
上面的 K-Means 描述中包含了几个概念:
- 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法。聚类就是将数据对象分组成为多个类或者簇 (Cluster),使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。
- 划分(Partitioning):聚类可以基于划分,也可以基于分层。划分即将对象划分成不同的簇,而分层是将对象分等级。
- 排他(Exclusive):对于一个数据对象,只能被划分到一个簇中。如果一个数据对象可以被划分到多个簇中,则称为可重叠的(Overlapping)。
- 距离(Distance):基于距离的聚类是将距离近的相似的对象聚在一起。基于概率分布模型的聚类是在一组对象中,找到能符合特定分布模型的对象的集合,他们不一定是距离最近的或者最相似的,而是能完美的呈现出概率分布模型所描述的模型。
K-Means 问题描述:
给定一个 n 个对象的数据集,它可以构建数据的 k 个划分,每个划分就是一个簇,并且 k ≤ n。同时还需满足:
- 每个组至少包含一个对象。
- 每个对象必须属于且仅属于一个簇。
Simply speaking, K-Means clustering is an algorithm to classify or to group your objects based on attributes/features, into K number of groups. K is a positive integer number. The grouping is done by minimizing the sum of squares of distances between data and the corresponding cluster centroid. Thus, the purpose of K-means clustering is to classify the data.
例如,有如下包含 10 条数据的集合。集合中每项描述了一个人的身高(Height: inches)和体重(Weight: kilograms)。
Height Weight ------------- (73.0, 72.6) (61.0, 54.4) (67.0, 99.9) (68.0, 97.3) (62.0, 59.0) (75.0, 81.6) (74.0, 77.1) (66.0, 97.3) (68.0, 93.3) (61.0, 59.0)
通过按照身高和体重的聚类,可以将上述 10 条数据分组成 3 类。
Height Weight ------------- (67.0, 99.9) (68.0, 97.3) (66.0, 97.3) (68.0, 93.3) (73.0, 72.6) (75.0, 81.6) (74.0, 77.1) (61.0, 54.4) (62.0, 59.0) (61.0, 59.0)
分类结果可以描述为:中等身高并且很重、很高并且中等体重、矮并且轻。如果用图形来观察分组状况则结果一目了然。
K-Means 算法实现:
由于 K-Means 算法值针对给定的完整数据集进行操作,不需要任何特殊的训练数据,所以 K-Means 是一种无监督的机器学习方法(Unsupervised Machine Learning Technique)。
K-Means 算法最常见的实现方式是使用迭代式精化启发法的 Lloyd's algorithm。
- 给定划分数量 k。创建一个初始划分,从数据集中随机地选择 k 个对象,每个对象初始地代表了一个簇中心(Cluster Centroid)。对于其他对象,计算其与各个簇中心的距离,将它们划入距离最近的簇。
- 采用迭代的重定位技术,尝试通过对象在划分间移动来改进划分。所谓重定位技术,就是当有新的对象加入簇或者已有对象离开簇的时候,重新计算簇的平均值,然后对对象进行重新分配。这个过程不断重复,直到各簇中对象不再变化为止。
randomly assign all data items to a cluster loop until no change in cluster assignments compute centroids for each cluster reassign each data item to cluster of closest centroid end
简洁点儿的表述即为:
initialize clustering loop update centroids update clustering end loop
应用 K-Means 算法到上述身高与体重的示例,聚类过程如下图所示。
K-Means 优缺点:
当结果簇是密集的,而且簇和簇之间的区别比较明显时,K-Means 的效果较好。对于大数据集,K-Means 是相对可伸缩的和高效的,它的复杂度是 O(nkt),n 是对象的个数,k 是簇的数目,t 是迭代的次数,通常 k << n,且 t << n,所以算法经常以局部最优结束。
K-Means 的最大问题是要求先给出 k 的个数。k 的选择一般基于经验值和多次实验结果,对于不同的数据集,k 的取值没有可借鉴性。另外,K-Means 对孤立点数据是敏感的,少量噪声数据就能对平均值造成极大的影响。
Basic K-Means - Lloyd's algorithm C# 代码实现:
Code below referenced from Machine Learning Using C# Succinctly by James McCaffrey, and article K-Means Data Clustering Using C#.
1 using System; 2 3 namespace ClusterNumeric 4 { 5 class ClusterNumProgram 6 { 7 static void Main(string[] args) 8 { 9 Console.WriteLine(" Begin k-means clustering demo "); 10 11 double[][] rawData = new double[10][]; 12 rawData[0] = new double[] { 73, 72.6 }; 13 rawData[1] = new double[] { 61, 54.4 }; 14 rawData[2] = new double[] { 67, 99.9 }; 15 rawData[3] = new double[] { 68, 97.3 }; 16 rawData[4] = new double[] { 62, 59.0 }; 17 rawData[5] = new double[] { 75, 81.6 }; 18 rawData[6] = new double[] { 74, 77.1 }; 19 rawData[7] = new double[] { 66, 97.3 }; 20 rawData[8] = new double[] { 68, 93.3 }; 21 rawData[9] = new double[] { 61, 59.0 }; 22 23 Console.WriteLine("Raw unclustered height (in.) weight (kg.) data: "); 24 Console.WriteLine(" ID Height Weight"); 25 Console.WriteLine("---------------------"); 26 ShowData(rawData, 1, true, true); 27 28 int numClusters = 3; 29 Console.WriteLine(" Setting numClusters to " + numClusters); 30 31 Console.WriteLine("Starting clustering using k-means algorithm"); 32 Clusterer c = new Clusterer(numClusters); 33 int[] clustering = c.Cluster(rawData); 34 Console.WriteLine("Clustering complete "); 35 36 Console.WriteLine("Final clustering in internal form: "); 37 ShowVector(clustering, true); 38 39 Console.WriteLine("Raw data by cluster: "); 40 Console.WriteLine(" ID Height Weight"); 41 ShowClustered(rawData, clustering, numClusters, 1); 42 43 Console.WriteLine(" End k-means clustering demo "); 44 Console.ReadLine(); 45 } 46 47 static void ShowData( 48 double[][] data, int decimals, 49 bool indices, bool newLine) 50 { 51 for (int i = 0; i < data.Length; ++i) 52 { 53 if (indices == true) 54 Console.Write(i.ToString().PadLeft(3) + " "); 55 56 for (int j = 0; j < data[i].Length; ++j) 57 { 58 double v = data[i][j]; 59 Console.Write(v.ToString("F" + decimals) + " "); 60 } 61 62 Console.WriteLine(""); 63 } 64 65 if (newLine == true) 66 Console.WriteLine(""); 67 } 68 69 static void ShowVector(int[] vector, bool newLine) 70 { 71 for (int i = 0; i < vector.Length; ++i) 72 Console.Write(vector[i] + " "); 73 74 if (newLine == true) 75 Console.WriteLine(" "); 76 } 77 78 static void ShowClustered( 79 double[][] data, int[] clustering, 80 int numClusters, int decimals) 81 { 82 for (int k = 0; k < numClusters; ++k) 83 { 84 Console.WriteLine("==================="); 85 for (int i = 0; i < data.Length; ++i) 86 { 87 int clusterID = clustering[i]; 88 if (clusterID != k) continue; 89 Console.Write(i.ToString().PadLeft(3) + " "); 90 for (int j = 0; j < data[i].Length; ++j) 91 { 92 double v = data[i][j]; 93 Console.Write(v.ToString("F" + decimals) + " "); 94 } 95 Console.WriteLine(""); 96 } 97 Console.WriteLine("==================="); 98 } 99 } 100 } 101 102 public class Clusterer 103 { 104 private int numClusters; // number of clusters 105 private int[] clustering; // index = a tuple, value = cluster ID 106 private double[][] centroids; // mean (vector) of each cluster 107 private Random rnd; // for initialization 108 109 public Clusterer(int numClusters) 110 { 111 this.numClusters = numClusters; 112 this.centroids = new double[numClusters][]; 113 this.rnd = new Random(0); // arbitrary seed 114 } 115 116 public int[] Cluster(double[][] data) 117 { 118 int numTuples = data.Length; 119 int numValues = data[0].Length; 120 this.clustering = new int[numTuples]; 121 122 for (int k = 0; k < numClusters; ++k) // allocate each centroid 123 this.centroids[k] = new double[numValues]; 124 125 InitRandom(data); 126 127 Console.WriteLine(" Initial random clustering:"); 128 for (int i = 0; i < clustering.Length; ++i) 129 Console.Write(clustering[i] + " "); 130 Console.WriteLine(" "); 131 132 bool changed = true; // change in clustering? 133 int maxCount = numTuples * 10; // sanity check 134 int ct = 0; 135 while (changed == true && ct <= maxCount) 136 { 137 ++ct; // k-means typically converges very quickly 138 UpdateCentroids(data); // no effect if fail 139 changed = UpdateClustering(data); // no effect if fail 140 } 141 142 int[] result = new int[numTuples]; 143 Array.Copy(this.clustering, result, clustering.Length); 144 return result; 145 } 146 147 private void InitRandom(double[][] data) 148 { 149 int numTuples = data.Length; 150 151 int clusterID = 0; 152 for (int i = 0; i < numTuples; ++i) 153 { 154 clustering[i] = clusterID++; 155 if (clusterID == numClusters) 156 clusterID = 0; 157 } 158 for (int i = 0; i < numTuples; ++i) 159 { 160 int r = rnd.Next(i, clustering.Length); 161 int tmp = clustering[r]; 162 clustering[r] = clustering[i]; 163 clustering[i] = tmp; 164 } 165 } 166 167 private void UpdateCentroids(double[][] data) 168 { 169 int[] clusterCounts = new int[numClusters]; 170 for (int i = 0; i < data.Length; ++i) 171 { 172 int clusterID = clustering[i]; 173 ++clusterCounts[clusterID]; 174 } 175 176 // zero-out this.centroids so it can be used as scratch 177 for (int k = 0; k < centroids.Length; ++k) 178 for (int j = 0; j < centroids[k].Length; ++j) 179 centroids[k][j] = 0.0; 180 181 for (int i = 0; i < data.Length; ++i) 182 { 183 int clusterID = clustering[i]; 184 for (int j = 0; j < data[i].Length; ++j) 185 centroids[clusterID][j] += data[i][j]; // accumulate sum 186 } 187 188 for (int k = 0; k < centroids.Length; ++k) 189 for (int j = 0; j < centroids[k].Length; ++j) 190 centroids[k][j] /= clusterCounts[k]; // danger? 191 } 192 193 private bool UpdateClustering(double[][] data) 194 { 195 // (re)assign each tuple to a cluster (closest centroid) 196 // returns false if no tuple assignments change OR 197 // if the reassignment would result in a clustering where 198 // one or more clusters have no tuples. 199 200 bool changed = false; // did any tuple change cluster? 201 202 int[] newClustering = new int[clustering.Length]; // proposed result 203 Array.Copy(clustering, newClustering, clustering.Length); 204 205 double[] distances = new double[numClusters]; // from tuple to centroids 206 207 for (int i = 0; i < data.Length; ++i) // walk through each tuple 208 { 209 for (int k = 0; k < numClusters; ++k) 210 distances[k] = Distance(data[i], centroids[k]); 211 212 int newClusterID = MinIndex(distances); // find closest centroid 213 if (newClusterID != newClustering[i]) 214 { 215 changed = true; // note a new clustering 216 newClustering[i] = newClusterID; // accept update 217 } 218 } 219 220 if (changed == false) 221 return false; // no change so bail 222 223 // check proposed clustering cluster counts 224 int[] clusterCounts = new int[numClusters]; 225 for (int i = 0; i < data.Length; ++i) 226 { 227 int clusterID = newClustering[i]; 228 ++clusterCounts[clusterID]; 229 } 230 231 for (int k = 0; k < numClusters; ++k) 232 if (clusterCounts[k] == 0) 233 return false; // bad clustering 234 235 Array.Copy(newClustering, clustering, newClustering.Length); // update 236 return true; // good clustering and at least one change 237 } 238 239 // Euclidean distance between two vectors for UpdateClustering() 240 private static double Distance(double[] tuple, double[] centroid) 241 { 242 double sumSquaredDiffs = 0.0; 243 for (int j = 0; j < tuple.Length; ++j) 244 sumSquaredDiffs += (tuple[j] - centroid[j]) * (tuple[j] - centroid[j]); 245 return Math.Sqrt(sumSquaredDiffs); 246 } 247 248 // helper for UpdateClustering() to find closest centroid 249 private static int MinIndex(double[] distances) 250 { 251 int indexOfMin = 0; 252 double smallDist = distances[0]; 253 for (int k = 1; k < distances.Length; ++k) 254 { 255 if (distances[k] < smallDist) 256 { 257 smallDist = distances[k]; 258 indexOfMin = k; 259 } 260 } 261 return indexOfMin; 262 } 263 } 264 }
运行结果如下:
参考资料
- 基于 Apache Mahout 构建社会化推荐引擎
- 探索推荐引擎内部的秘密,第 1 部分: 推荐引擎初探
- 探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法 - 协同过滤
- 探索推荐引擎内部的秘密,第 3 部分: 深入推荐引擎相关算法 - 聚类
- 浅谈Kmeans聚类
- Mahout学习——K-Means Clustering
- 基本Kmeans算法介绍及其实现
- 算法杂货铺——k均值聚类(K-means)
- K-Means Data Clustering Using C#
- K-Means Clustering Used in Intention Based Scoring Projects
- Multi-Threaded K-Means Clustering in .NET 4.0
- CS229 Lecture notes -- Andrew Ng
- Cluster analysis
- k-means clustering
- K-means++ clustering
- Lloyd's algorithm
- NP-hard
- Voronoi diagram
- K-Means 算法
- A Tutorial on Clustering Algorithms
- Unsupervised learning or Clustering – K-means Gaussian mixture models
本篇文章《K-Means 聚类算法》由 Dennis Gao 发表自博客园个人博客,未经作者本人同意禁止以任何的形式转载,任何自动的或人为的爬虫转载行为均为耍流氓。