• 【LeetCode】17. Letter Combinations of a Phone Number


    Letter Combinations of a Phone Number

    Given a digit string, return all possible letter combinations that the number could represent.

    A mapping of digit to letters (just like on the telephone buttons) is given below.

    Input:Digit string "23"
    Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].
    

    Note:
    Although the above answer is in lexicographical order, your answer could be in any order you want.

    枚举所有情况。

    对于每一个输入数字,对于已有的排列中每一个字符串,分别加入该数字所代表的每一个字符。

    所有是三重for循环。

    举例:

    初始化排列{""}

    1、输入2,代表"abc"

    已有排列中只有字符串"",所以得到{"a","b","c"}

    2、输入3,代表"def"

    (1)对于排列中的首元素"a",删除"a",并分别加入'd','e','f',得到{"b","c","ad","ae","af"}

    (2)对于排列中的首元素"b",删除"b",并分别加入'd','e','f',得到{"c","ad","ae","af","bd","be","bf"}

    (2)对于排列中的首元素"c",删除"c",并分别加入'd','e','f',得到{"ad","ae","af","bd","be","bf","cd","ce","cf"}

    注意

    (1)每次添加新字母时,应该先取出现有ret当前的size(),而不是每次都在循环中调用ret.size(),因为ret.size()是不断增长的。

    (2)删除vector首元素代码为:

    ret.erase(ret.begin());
    class Solution {
    public:
        vector<string> letterCombinations(string digits) {
            vector<string> ret;
            if(digits == "")
                return ret;
                
            ret.push_back("");
            
            vector<string> dict(10); //0~9
            dict[2] = "abc";
            dict[3] = "def";
            dict[4] = "ghi";
            dict[5] = "jkl";
            dict[6] = "mno";
            dict[7] = "pqrs";
            dict[8] = "tuv";
            dict[9] = "wxyz";
            
            for(int i = 0; i < digits.size(); i ++)
            {
                int size = ret.size();
                for(int j = 0; j < size; j ++)
                {
                    string cur = ret[0];
                    ret.erase(ret.begin());
                    for(int k = 0; k < dict[digits[i]-'0'].size(); k ++)
                    {
                        ret.push_back(cur + dict[digits[i]-'0'][k]);
                    }
                }
            }
            return ret;
        }
    };

  • 相关阅读:
    Stack frame
    How a stack frame works 栈帧的要素与构建步骤
    Symbol Table
    函数调用栈实例研究
    崩溃日志的实例
    符号表的作用和地位
    A C compiler that parses this code will contain at least the following symbol table entries
    前复权是从今天的价格倒推 后复权是从上市价格前推 不复权就是原始K线。
    Thinkphp5+PHPExcel实现批量上传表格数据功能
    PHP 开发API接口签名验证
  • 原文地址:https://www.cnblogs.com/ganganloveu/p/4175384.html
Copyright © 2020-2023  润新知