• 省队集训Day1 总统选举


    【题目大意】

    一个$n$个数的序列,$m$次操作,每次选择一段区间$[l, r]$,求出$[l, r]$中出现超过一半的数。

    如果没有超过一半的数,那么就把答案钦定为$s$,每次会有$k$个数进行改变,给出下标,改变成当前的答案$s$。

    $n, m leq 5*10^5, sum kleq 10^6$

    By FJSDFZ ditoly

    【题解】

    用这题的方法进行线段树操作即可:http://www.cnblogs.com/galaxies/p/20170602_c.html

    但是这样需要验证是否可行,那么问题变成待修改的询问$[l, r]$区间内$x$的出现次数。

    如果没有修改,我会分块!

    修改就写个平衡树(开始想STL发现set不支持iterator减法,就gg了)

    然后慢的要死。(论不会treap的危害)

    后来一气之下找了pb_ds::tree来用。

    # include <ext/pb_ds/assoc_container.hpp>
    # include <ext/pb_ds/tree_policy.hpp>
    using namespace __gnu_pbds;
    tree <int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> S[M];

    每次只要调用order_of_key(x)即可,注意这个操作是右开区间,所以本题中可能需要些许变换。

    # include <stdio.h>
    # include <string.h>
    # include <iostream>
    # include <algorithm>
    // # include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long ll;
    typedef long double ld;
    typedef unsigned long long ull;
    const int M = 5e5 + 10;
    const int mod = 1e9+7;
    
    inline int getint() {
        int x = 0; char ch = getchar();
        while(!isdigit(ch)) ch = getchar();
        while(isdigit(ch)) x = (x<<3) + (x<<1) + ch - '0', ch = getchar();
        return x;
    }
    
    # define gi getint()
    
    int n, a[M];
    
    struct node {
        int w, t;
        node() {}
        node(int w, int t) : w(w), t(t) {}
        friend node operator + (node a, node b) {
            if(a.w == b.w) return node(a.w, a.t + b.t);
            if(a.t >= b.t) return node(a.w, a.t - b.t);
            else return node(b.w, b.t - a.t);
        }
    };
    
    /*
    int rt[M];
    struct Splay {
        int ch[M][2], fa[M], val[M], s[M];
        inline void up(int x) {
            if(!x) return ;
            s[x] = 1 + s[ch[x][0]] + s[ch[x][1]];
        }
        inline void rotate(int x, int &rt) {
            int y = fa[x], z = fa[y], ls = ch[y][1] == x, rs = ls^1;
            if(rt == y) rt = x;
            else ch[z][ch[z][1] == y] = x;
            fa[ch[x][rs]] = y, fa[y] = x, fa[x] = z;
            ch[y][ls] = ch[x][rs]; ch[x][rs] = y;
            up(y), up(x);
        }
        inline void splay(int x, int &rt) {
            while(x != rt) {
                int y = fa[x], z = fa[y];
                if(y != rt) {
                    if((ch[z][0] == y) ^ (ch[y][0] == x)) rotate(x, rt);
                    else rotate(y, rt);
                }
                rotate(x, rt);
            }
        }
        
        inline int find(int x, int pos) {
            if(pos == val[x]) return x;
            if(pos < val[x]) return find(ch[x][0], pos);
            else return find(ch[x][1], pos);    
        }
        
        inline int gmax(int x) {
            while(ch[x][1]) x = ch[x][1];
            return x;
        }
        
        inline int del(int &rt, int pos) {
            int x = find(rt, pos);
            splay(x, rt);
            if(!ch[x][0]) {
                rt = ch[x][1]; fa[rt] = 0; ch[x][1] = 0;
                return x;
            }
            if(!ch[x][1]) {
                rt = ch[x][0]; fa[rt] = 0; ch[x][0] = 0;
                return x;
            }
            int y = gmax(ch[x][0]); splay(y, ch[x][0]);
            rt = y; ch[y][1] = ch[x][1]; fa[ch[x][1]] = y;
            ch[x][0] = ch[x][1] = 0; fa[y] = 0; 
            up(y);
            return x;
        }
            
        inline void ins(int &x, int y, int pos, int id) {
            if(!x) {
                x = id; fa[x] = y; val[x] = pos; s[x] = 1; ch[x][0] = ch[x][1] = 0;
                return ;
            }
            if(pos < val[x]) ins(ch[x][0], x, pos, id);
            else ins(ch[x][1], x, pos, id);
            up(x);
        }
        
        inline void Ins(int &rt, int pos, int id) {
            ins(rt, 0, pos, id);
            splay(id, rt);
        }
        
        inline int rank(int x, int d) {
            if(!x) return 0;
            if(d < val[x]) return rank(ch[x][0], d);
            else return s[ch[x][0]] + 1 + rank(ch[x][1], d);
        }
        
        inline void DEBUG(int x) {
            if(!x) return ;
            DEBUG(ch[x][0]);
            printf("x = %d, ls = %d, rs = %d, pos = %d, sz = %d
    ", x, ch[x][0], ch[x][1], val[x], s[x]);
            DEBUG(ch[x][1]);
        }
        
        inline void debug() {
            for (int i=1; i<=5; ++i) {
                printf("rt %d ======================
    ", i);
                DEBUG(rt[i]);
            }
            puts("
    ");
        }
    }S;
    */
    
    
    # include <ext/pb_ds/assoc_container.hpp>
    # include <ext/pb_ds/tree_policy.hpp>
    using namespace __gnu_pbds;
    tree <int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> S[M];
    
    struct SMT {
        node w[M << 2];
        # define ls (x<<1)
        # define rs (x<<1|1)
        inline void up(int x) {
            w[x] = w[ls] + w[rs];
        }
        inline void build(int x, int l, int r) {
            if(l == r) {
                w[x] = node(a[l], 1);
                return ;
            }
            int mid = l+r>>1;
            build(ls, l, mid), build(rs, mid+1, r);
            up(x);
        }
        inline void edt(int x, int l, int r, int ps, int d) {
            if(l == r) {
                S[w[x].w].erase(l);
                w[x] = node(d, 1); 
                S[d].insert(l);
                return ;
            }
            int mid = l+r>>1;
            if(ps <= mid) edt(ls, l, mid, ps, d);
            else edt(rs, mid+1, r, ps, d);
            up(x);
        }
        inline node query(int x, int l, int r, int L, int R) {
            if(L <= l && r <= R) return w[x];
            int mid = l+r>>1;
            if(R <= mid) return query(ls, l, mid, L, R);
            else if(L > mid) return query(rs, mid+1, r, L, R);
            else return query(ls, l, mid, L, mid) + query(rs, mid+1, r, mid+1, R);
        }
        inline void debug(int x, int l, int r) {
            printf("x = %d, [%d, %d],    w[x] = {%d, %d}
    ", x, l, r, w[x].w, w[x].t);
            if(l == r) return ;
            int mid = l+r>>1;
            debug(ls, l, mid);
            debug(rs, mid+1, r);
        }
        # undef ls
        # undef rs
    }T;
        
    inline bool check(int l, int r, int d) {
        int times = S[d].order_of_key(r+1) - S[d].order_of_key(l);
    //    cout << "times = " << times << endl;
        if(times <= (r-l+1)/2) return false;
        return true;
    }
    
    int main() {
        freopen("president.in", "r", stdin);
        freopen("president.out", "w", stdout);
        n = gi; int Q = gi; 
        for (int i=1; i<=n; ++i) {
            a[i] = gi;
            S[a[i]].insert(i);
        }
        T.build(1, 1, n);
        int l, r, s, k, leader; node ans;
        while(Q--) {
            if(Q % 10000 == 0) cerr << Q << endl;
    //        S.debug();
            l = gi, r = gi, s = gi, k = gi;
            ans = T.query(1, 1, n, l, r);
            if(check(l, r, ans.w)) leader = ans.w;
            else leader = s;
            for (int i=1, t; i<=k; ++i) {
                t = gi;
                T.edt(1, 1, n, t, leader);
            }
            printf("%d
    ", leader);
    //        T.debug(1, 1, n);
        }
        ans = T.query(1, 1, n, 1, n);
        if(check(1, n, ans.w)) printf("%d
    ", ans.w);
        else puts("-1");
        return 0;
    }
    View Code

    注释里面是平衡树。。T得不要不要的。。

    复杂度都是$O((n + m + sum K) log n)$

  • 相关阅读:
    实践数据湖iceberg 第二课 iceberg基于hadoop的底层数据格式
    HTTP——系统学习
    电脑在内网如何快速同步时间
    interpreting non ascii codepoint
    Python 视频抽帧
    C# 静态实例的释放
    "Debian 安装" 国内巨慢解决方案全球首发解决方案
    QLIKVSENSE表达式/函数
    票到货未到财务处理方式
    管理好20人的团队
  • 原文地址:https://www.cnblogs.com/galaxies/p/20170707_7.html
Copyright © 2020-2023  润新知