• 省队集训 Day6 序列


    【题目大意】

    给出$n$个数的序列$a_1, a_2, ..., a_n$,有$m$次操作,为下面三种:

    $A~l~r~d$:区间$[l,r]$,全部加$d$。

    $M~l~r~d$:区间$[l,r]$,对$d$取max。

    $Q~x$:询问$a_x$的值。

    对于30%的数据,$n, mleq 10^4$;

    对于60%的数据,保证数据随机;

    对于100%的数据,满足$n, m leq 10^5$,所有数的绝对值不超过$2^{31} - 1$。保证也是随机的

    【题解】

    显然正解是吉司机线段树,我不会,那怎么办?分块!!!

    对于100%的数据的那个性质我是拿数据后才知道的。

    考场写了$O(n * (n/B) * logB)$的常数大的跟*一样的分块做法,其中$B = 32$,理论上$B = 128$左右比较优,可能是我常数太大了只能开32。。。

    由于数据随机(迷),就过了……

    具体是这样的,每个操作如果涉及部分块,直接暴力重构。

    每个块内排序后,发现操作2相当于找一段前缀,改成$d$,然后将这些数的次数全部+1,这个可以方便用线段树维护,找的话线段树上二分即可。

    操作1的话相当于块全局加,然后这些块的次数全部+1(需要特判$d=0$),可以记录一个全局标记来做。

    然后就很方便维护信息了(吧),为了线段树上二分可能需要记录一个最小值。

    然后调调边界啊,开开longlong啊,卡了卡常就过了。。

    # include <stdio.h>
    # include <assert.h> 
    # include <string.h>
    # include <iostream>
    # include <algorithm>
    # define getchar getchar_unlocked
    
    using namespace std;
    
    typedef long long ll;
    typedef unsigned long long ull;
    typedef long double ld;
    
    # ifdef WIN32
    # define LLFORMAT "%I64d"
    # else
    # define LLFORMAT "%lld"
    # endif
    
    # define beg BEG
    # define end END
    
    const int N = 1e5 + 10, B = 3205, SN = 128 + 5;
    const ll inf = 1e17;
    
    inline int getint() {
        int x = 0, f = 1; char ch = getchar();
        while(!isdigit(ch)) {
            if(ch == '-') f = 0;
            ch = getchar();
        }
        while(isdigit(ch)) x = (x<<3) + (x<<1) + ch - '0', ch = getchar();
        return f ? x : -x;
    }
    
    int n, m, beg[B], end[B], len[B], bl[N], id[B][33];
    
    struct pa {
        ll a; int t;
        pa() {}
        pa(ll a, int t) : a(a), t(t) {}
        inline friend bool operator < (pa a, pa b) {
            return a.a < b.a;
        }
        inline friend pa operator + (pa a, pa b) {
            return pa(min(a.a, b.a), 0);
        }
    }p[N];
    
    pa g[B]; int gn = 0;
    ll add[B]; int addt[B];
    struct SMT {
        // 区间覆盖,对于a做,区间加法,对于t做 
        pa w[SN]; int tag[SN]; ll cov[SN]; bool hc[SN];
        # define ls (x<<1)
        # define rs (x<<1|1) 
        inline void up(int x) {
            w[x] = w[ls] + w[rs];
        }
        inline void pushtag(int x, int tg) {
            tag[x] += tg; w[x].t += tg;
        }
        inline void pushcov(int x, ll c) {
            w[x].a = c; cov[x] = c; hc[x] = 1;
        }
        inline void down(int x) {
            if(hc[x]) {
                pushcov(ls, cov[x]); pushcov(rs, cov[x]);
                hc[x] = 0; cov[x] = 0;
            }
            if(tag[x]) {
                pushtag(ls, tag[x]); pushtag(rs, tag[x]);
                tag[x] = 0;
            }
        }
        inline void build(int x, int l, int r) {
            tag[x] = cov[x] = 0; hc[x] = 0;
            if(l == r) {
                w[x] = g[l];
                return ;
            }
            int mid = l+r>>1;
            build(ls, l, mid); build(rs, mid+1, r);
            up(x);
        } 
        inline void cover(int x, int l, int r, int L, int R, ll p) {
            if(L <= l && r <= R) {
                pushcov(x, p);
                pushtag(x, 1);
                return ;
            }
            down(x);
            int mid = l+r>>1;
            if(L <= mid) cover(ls, l, mid, L, R, p);
            if(R > mid) cover(rs, mid+1, r, L, R, p);
            up(x);
        }
        inline void gans(int x, int l, int r) {
            if(l == r) {
                g[++gn] = w[x];
                return ;
            }
            down(x);
            int mid = l+r>>1;
            gans(ls, l, mid); gans(rs, mid+1, r);
        }
        inline pa gs(int x, int l, int r, int ps) {
    //        cerr << x << ' ' << w[x].a << ' ' << w[x].t << endl;
            if(l == r) return w[x];
            down(x);
            int mid = l+r>>1;
            if(ps <= mid) return gs(ls, l, mid, ps);
            else return gs(rs, mid+1, r, ps);
        }
        // find the last number that < p
        inline int find(int x, int l, int r, ll p) {
            if(l == r) return l;
            down(x);
            int mid = l+r>>1;
            if(w[rs].a < p) return find(rs, mid+1, r, p);
            else return find(ls, l, mid, p);
        }
        
        inline void debug(int x, int l, int r) {
            printf("x = %d, min = " LLFORMAT "
    ", x, w[x].a);
            if(l == r) {
                printf("  times = %d
    ", w[x].t);
                return ;
            }
            int mid = l+r>>1;
            debug(ls, l, mid);
            debug(rs, mid+1, r);
        }
        # undef ls
        # undef rs
    }T[B];
    
    
    int tid[B];
    inline bool cmp(int x, int y) {
        return p[x] < p[y];
    }
    
    namespace prepare {
        inline void deal(int x) {
            register int *pid = id[x], Len; Len = len[x] = end[x] - beg[x] + 1;
            for (register int i=1; i<=Len; ++i) tid[i] = beg[x] + i - 1;
            sort(tid+1, tid+Len+1, cmp);
            for (register int i=1; i<=Len; ++i) g[i] = p[tid[i]];
            T[x].build(1, 1, Len);
            for (register int i=1; i<=Len; ++i) pid[i] = tid[i];    
        }
    }
    
    namespace option1 {
        inline void deal(int x, int l, int r, int c) {
            register int *pid = id[x], Len = len[x];
            gn = 0, T[x].gans(1, 1, Len);
            for (register int i=1; i<=Len; ++i) p[pid[i]] = g[i], tid[i] = beg[x] + i - 1;
            for (register int i=beg[x]; i<=end[x]; ++i) p[i].a += add[x], p[i].t += addt[x];
            add[x] = 0; addt[x] = 0;
            for (register int i=l; i<=r; ++i) p[i].a += c, p[i].t ++; 
            sort(tid+1, tid+Len+1, cmp);
            for (register int i=1; i<=Len; ++i) g[i] = p[tid[i]];
            T[x].build(1, 1, Len);
            for (register int i=1; i<=Len; ++i) pid[i] = tid[i];
        }
        inline void deal(int x, int c) {
            add[x] += c; addt[x] ++;
        }
        inline void main(int l, int r, int c) {
            register int L = bl[l], R = bl[r];
            if(L == R) deal(L, l, r, c);
            else {
                deal(L, l, end[L], c);
                deal(R, beg[R], r, c);
                for (register int i=L+1; i<R; ++i) deal(i, c);
            }
        }
    }
    
    namespace option2 {
        inline void deal(int x, int l, int r, int c) {
            register int *pid = id[x], Len = len[x];
            gn = 0, T[x].gans(1, 1, Len);
            for (register int i=1; i<=Len; ++i) p[pid[i]] = g[i], tid[i] = beg[x] + i - 1;
            for (register int i=beg[x]; i<=end[x]; ++i) p[i].a += add[x], p[i].t += addt[x];
            add[x] = 0; addt[x] = 0;
            for (register int i=l; i<=r; ++i) 
                if(p[i].a < c) p[i].a = c, p[i].t ++;
            sort(tid+1, tid+Len+1, cmp);
            for (register int i=1; i<=Len; ++i) g[i] = p[tid[i]];
    //        for (int i=1; i<=len[x]; ++i) cerr << g[i].a << ' ' << g[i].t << " ====
    ";
            T[x].build(1, 1, Len);
            for (register int i=1; i<=Len; ++i) pid[i] = tid[i];
    //        for (int i=1; i<=len[x]; ++i) cerr << id[x][i] << ' '; cout << "  id end
    ";
        }
        inline void deal(int x, int c) {
            ll p = c - add[x];
            if(T[x].w[1].a >= p) return ;
            else {
                int tp = T[x].find(1, 1, len[x], p);
                T[x].cover(1, 1, len[x], 1, tp, p);
            }
        }
        inline void main(int l, int r, int c) {
            register int L = bl[l], R = bl[r];
            if(L == R) deal(L, l, r, c);
            else {
                deal(L, l, end[L], c);
                deal(R, beg[R], r, c);
                for (register int i=L+1; i<R; ++i) deal(i, c);
            }
        }
    }
    
    namespace option3 {
        inline pa main(int x) {
            register int X = bl[x], *pid = id[X]; pa ret = pa(-inf, 0);
            for (register int i=1; i<=len[X]; ++i)
                if(pid[i] == x) {
                    ret = T[X].gs(1, 1, len[X], i);
                    break;
                }
            if(ret.a != -inf) ret.a += add[X];
            ret.t += addt[X];
            return ret;
        }
    }
    
    int main() {
        freopen("seq4.in", "r", stdin);
        freopen("seq.out", "w", stdout);
        const int BB = 32;
        n = getint();
        for (register int i=1; i<=n; ++i) p[i] = pa(getint(), 0);
        for (register int i=1; i<=n; ++i) bl[i] = (i-1)/BB + 1;
        m = bl[n];
        for (register int i=1; i<=m; ++i) beg[i] = (i-1)*BB+1, end[i] = i*BB; end[m] = n;
        for (register int i=1; i<=m; ++i) prepare :: deal(i); 
        int Q = getint();
        static int l, r, c;
        static char ch;
        pa t;
        while(Q--) {
            ch = getchar();
            while(!isupper(ch)) ch = getchar();
    //        T[1].debug(1, 1, len[1]);
    //        for (int i=1; i<=len[1]; ++i) cout << id[1][i] << ' '; cout << endl;
            if(ch == 'A') {
                l = getint(), r = getint(), c = getint();
                if(!c) continue;
                option1 :: main(l, r, c); 
            } else if(ch == 'M') {
                l = getint(), r = getint(), c = getint();
                option2 :: main(l, r, c);
            } else {
                l = getint(); 
                t = option3 :: main(l);
                printf(LLFORMAT " %d
    ", t.a, t.t);
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    条形码:Code93
    MSSQL 又一个行列转换
    PowerShell查看Sharepoint日志
    SharePoint Meeting Workspace
    Developer Dashboard in SharePoint 2010
    SPUtility.SendEmail
    处理sharepoint 列表中的 person or group类型字段
    SharePoint Issue: Unable to oben the Site (Object null reference Error) Solution
    import a Microsoft SharePoint 2010 site definition
    SPListTemplateType 枚举 (Microsoft.SharePoint) 创建列表时的ListTemplate Type属性
  • 原文地址:https://www.cnblogs.com/galaxies/p/20170612_c.html
Copyright © 2020-2023  润新知