• 11.多线程、多进程和线程池编程


    1.1.线程同步Lock和Rlock

    (1)Lock

    • 用锁会影响性能
    • 用锁会产生死锁
    import threading
    from threading import Lock
    
    total = 0
    lock = Lock()
    
    def add():
        global total
        global local
        for i in range(100000):
            lock.acquire()
            # lock.acquire()   #如果再加把锁会产生死锁
            total += 1
            lock.release()
    
    def desc():
        global total
        global local
        for i in range(100000):
            lock.acquire()     #获取锁
            total -= 1
            lock.release()     #释放锁
    
    thread1 = threading.Thread(target=add)
    thread2 = threading.Thread(target=desc)
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    print(total)   #0

    (2)RLock

    RLock:在同一个线程里面,可以连续多次调用acquire,一定要注意acquire和release的次数相等

    import threading
    from threading import Lock,RLock
    
    total = 0
    lock = RLock()
    
    def add():
        global total
        global local
        for i in range(100000):
            #用RLock在同一线程里面,可以多次调用acquire,不会产生死锁
            lock.acquire()
            lock.acquire()
            total += 1
            #release的次数和acquire的次数相等
            lock.release()
            lock.release()
    
    def desc():
        global total
        global local
        for i in range(100000):
            lock.acquire()     #获取锁
            total -= 1
            lock.release()     #释放锁
    
    thread1 = threading.Thread(target=add)
    thread2 = threading.Thread(target=desc)
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    print(total)   #0

    1.2.线程同步 - condition 

    使用condition模拟对话

    import threading
    from threading import Condition
    
     #通过condition,完成协同读诗
    class XiaoAi(threading.Thread):
        def __init__(self,cond):
            super().__init__(name='小爱')
            self.cond = cond
    
        def run(self):
            with self.cond:
                #等待
                self.cond.wait()
                print("{} : 在".format(self.name))
                #通知
                self.cond.notify()
    
                self.cond.wait()
                print("{} : 好啊".format(self.name))
                self.cond.notify()
    
                self.cond.wait()
                print("{} : 君住长江尾".format(self.name))
                self.cond.notify()
    
    class TianMao(threading.Thread):
        def __init__(self,cond):
            super().__init__(name="天猫精灵")
            self.cond = cond
    
        def run(self):
            with self.cond:
                print("{} : 小爱同学".format(self.name))
                self.cond.notify()
                self.cond.wait()
    
                print("{} : 我们来对古诗吧".format(self.name))
                self.cond.notify()
                self.cond.wait()
    
                print("{} : 我在长江头".format(self.name))
                self.cond.notify()
                self.cond.wait()
    
    if __name__ == '__main__':
        cond = threading.Condition()
        xiaoai = XiaoAi(cond)
        tianmao = TianMao(cond)
    
        xiaoai.start()
        tianmao.start()

    结果:

    1.3.线程同步 - Semaphore 

    控制线程并发数量

    #samaphore是用于控制进入数量的锁
    
    import threading
    import time
    
    class htmlSpider(threading.Thread):
        def __init__(self,url,sem):
            super().__init__()
            self.url = url
            self.sem = sem
    
        def run(self):
            time.sleep(2)
            print("got html text success!")
            self.sem.release()   #释放锁
    
    class UrlProducer(threading.Thread):
        def __init__(self, sem):
            super().__init__()
            self.sem = sem
        def run(self):
            for i in range(20):
                self.sem.acquire()    #加锁
                html_htread = htmlSpider("baidu.com/{}".format(i), self.sem)
                html_htread.start()
    
    if __name__ == '__main__':
        #控制线程并发数量为3
        sem = threading.Semaphore(3)
        url_producer = UrlProducer(sem)
        url_producer.start()

    11.4.ThreadPoolExecutor线程池

    线程池

    from concurrent.futures import ThreadPoolExecutor, as_completed
    import time
    
    #为什么要线程池
    #主线程中可以获取某一个线程的状态或者某一个任务的状态,以及返回值
    #当一个线程完成的时候,主线程立马知道
    #futures可以让多线程和多进程编码接口一致
    
    def get_html(times):
        time.sleep(times)
        print("get page {} success".format(times))
        return times
    
    executor = ThreadPoolExecutor(max_workers=2)
    
    #通过submit提交执行的函数到线程池中,sumbit是立即返回
    task1 = executor.submit(get_html, (3))    #函数和参数
    
    #done方法用于判定某个任务是否完成
    print(task1.done())      #False
    time.sleep(4)
    print(task1.done())      #True
    #result方法查看task函数执行的结构
    print(task1.result())    #3

    用as_completed获取任务结束的返回

    from concurrent.futures import ThreadPoolExecutor, as_completed
    import time
    
    #为什么要线程池
    #主线程中可以获取某一个线程的状态或者某一个任务的状态,以及返回值
    #当一个线程完成的时候,主线程立马知道
    #futures可以让多线程和多进程编码接口一致
    
    # def get_html(times):
    #     time.sleep(times)
    #     print("get page {} success".format(times))
    #     return times
    #
    # executor = ThreadPoolExecutor(max_workers=2)
    #
    # #通过submit提交执行的函数到线程池中,sumbit是立即返回
    # task1 = executor.submit(get_html, (3))    #函数和参数
    #
    # #done方法用于判定某个任务是否完成
    # print(task1.done())      #False
    # time.sleep(4)
    # print(task1.done())      #True
    # #result方法查看task函数执行的结构
    # print(task1.result())    #3
    
    def get_html(times):
        time.sleep(times)
        print("get page {} success".format(times))
        return times
    
    executor = ThreadPoolExecutor(max_workers=2)
    
    #获取已经成功的task的返回
    urls = [3,2,4]
    all_task = [executor.submit(get_html, (url)) for url in urls]
    
    for future in as_completed(all_task):
        data = future.result()
        print(data)   #已经成功的task函数的return

    11.5.进程间通信 - Queue

    Queue

    import time
    
    from multiprocessing import Process, Queue
    
    def producer(queue):
        queue.put("a")
        time.sleep(2)
    
    def consumer(queue):
        time.sleep(2)
        data = queue.get()
        print(data)
    
    if __name__ == '__main__':
        queue = Queue(10)
        my_producer = Process(target=producer, args=(queue,))
        my_consumer = Process(target=consumer, args=(queue,))
    
        my_producer.start()
        my_consumer.start()
        my_producer.join()
        my_consumer.join()

    11.6.进程间通信 - Manager

    Manger

    import time
    
    from multiprocessing import Process, Queue, Manager,Pool
    
    def producer(queue):
        queue.put("a")
        time.sleep(2)
    
    def consumer(queue):
        time.sleep(2)
        data = queue.get()
        print(data)
    
    if __name__ == '__main__':
        #pool中的进程间通信需要使用manger中的queue
        queue = Manager().Queue(10)
        pool = Pool(2)   #创建进程池
    
        pool.apply_async(producer, args=(queue, ))
        pool.apply_async(consumer, args=(queue, ))
    
        pool.close()
        pool.join()

    11.7.进程间通信 - Pipe

    pipe实现进程间通信(只能两个进程之间)

    #Pipe进程间通信
    from multiprocessing import Process, Pipe
    
    def producer(pipe):
        pipe.send("derek")
    
    def consumer(pipe):
        print(pipe.recv())
    
    if __name__ == '__main__':
        receive_pipe, send_pipe = Pipe()
        my_producer = Process(target=producer, args=(send_pipe, ))
        my_consumer = Process(target=consumer, args=(receive_pipe, ))
    
        my_producer.start()
        my_consumer.start()
        my_producer.join()
        my_producer.join()
     
     
     
  • 相关阅读:
    如何提取Redis中的大KEY
    VIM标记 mark 详解
    JAVA编写的一个简单的Socket实现的HTTP响应服务器
    onenote 直接发布文章到CSDN
    guava学习笔记--字符串处理
    带打印子结点的自底向上算法
    动态规划算法3
    动态规划算法2
    一个菜鸟学习动态规划算法的过程
    php取得当前时间函数
  • 原文地址:https://www.cnblogs.com/gaidy/p/12095488.html
Copyright © 2020-2023  润新知