• leetcode@ [72/115] Edit Distance & Distinct Subsequences (Dynamic Programming)


    https://leetcode.com/problems/edit-distance/

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

    You have the following 3 operations permitted on a word:

    a) Insert a character
    b) Delete a character
    c) Replace a character

    用dp[i][j] 来表示 长度为 i 的 word1 经过 dp[i][j]次变换 可以得到长度为 j 的word2,那么我们主要考察两种情况,第一种是:word1[i] == word2[j],那么这个问题的规模便转换成了:dp[i][j] = dp[i-1][j-1]. 第二种情况是:word1[i] != word2[j],那么我们可以删除掉word1中的第 i 个字符,或者我们可以把 word1中的第 i 个字符换成与 word2[j] 相同的字符,或者我们还可以同时 删除 word1[i] 和 word2[j]. 于是状态转移方程为:dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1.

    class Solution {
    public:
        int minDistance(string word1, string word2) {
            int m = word1.length(), n = word2.length();
            
            vector<vector<int> > dp(m+1, vector<int> (n+1, 0));
            
            for(int i=0;i<=m;++i) dp[i][0] = i;
            for(int j=0;j<=n;++j) dp[0][j] = j;
            
            for(int i=1;i<=m;++i) {
                for(int j=1;j<=n;++j) {
                    if(word1[i-1] == word2[j-1]) {
                        dp[i][j] = min(dp[i-1][j-1], dp[i-1][j]+1);
                    }
                    else {
                        dp[i][j] = min(dp[i-1][j], min(dp[i][j-1], dp[i-1][j-1])) + 1;
                    }
                }
            }
            
            return dp[m][n];
        }
    };
    View Code

    https://leetcode.com/problems/distinct-subsequences/

    Given a string S and a string T, count the number of distinct subsequences of T in S.

    A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

    Here is an example:
    S = "rabbbit", T = "rabbit"

    Return 3.

    解题报告:用 dp[i][[j] 来表示长度为 i 的 S串 包含了几个 T串。分两种情况考虑,第一种:S[i] != T[j],那么问题转而变成求S[1,...i-1] 包含了几个 T[1...i]。因为S[i] 对解的个数不会产生影响。第二种: S[i] == T[j],那么一种可能是 S[1...i-1] 包含了 若干个 T[1...j-1],或者是S[1...i-1] 包含了 若干个T[1...j]。所以状态转移方程为:

    dp[i][j] = dp[i-1][j] + dp[i-1][j-1] (if S[i] == T[j])

    dp[i][j] = dp[i-1][j] (if S[i] != T[j])

    class Solution {
    public:
        int numDistinct(string s, string t) {
            int m = s.length(), n = t.length();
            vector<vector<int> > dp(m+1, vector<int>(n+1, 0));
            
            for(int i=0;i<=m;++i) dp[i][0] = 1;
            
            for(int i=1;i<=m;++i) {
                for(int j=1;j<=n;++j) {
                    if(s[i-1] == t[j-1]) dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
                    else dp[i][j] = dp[i-1][j];
                }
            }
            
            return dp[m][n];
        }
    };
    View Code
  • 相关阅读:
    FORTRAN:现代软件开放的奠基者
    头条前端架构师总结全面的react组件通讯的技巧和弊端
    9 组 APP 的配色参考,超多色系,任意搭配选择
    洛克希德·马丁 公司的开源项目github
    SOLIDWORKS产生和发展成功的原因
    IT历史连载26Mac操作系统的历史
    使用Parasolid内核的软件有哪些?
    反射技术与工厂方法
    C++各大有名库的介绍
    Identity Server 4 从入门到落地(八)—— .Net Framework 客户端
  • 原文地址:https://www.cnblogs.com/fu11211129/p/5024022.html
Copyright © 2020-2023  润新知