如题,是一道组合数学题
http://blog.csdn.net/super_chris/article/details/6113779
http://wenku.baidu.com/view/7891bcc089eb172ded63b7c6.html
---
有同学提到,这个题还可以规约到“选举问题”(我们之前做过这道题),规约,非常好的思路!
选举问题:假定一次选举中,候选人甲得a票,候选人乙得b票,且a>b,将全部a+b张选票按某种顺序排列,依次计票时,甲的票数总比乙的票数多,问这种排列方法有多少种?(假定甲的a张选票都相同,乙的b张选票都相同)
答案是:C(a + b, a) - 2C(a + b - 1, a),C(M,N)是M中取N的方法数。具体解法看这里的文档(作者不详) http://pan.baidu.com/share/link?shareid=72604&uk=1292515846
原问题的不穿过可以分为两类:(1)路径上点的横坐标总是>=纵坐标(2)路径上点的横坐标总是<=纵坐标,这两类路径关于对角线对称,构成一一映射,所以这两类个数相等。
考虑情况(1),就相当于甲乙两人各有n票,要求计票过程中甲的票数>=乙的票数,求有多少种排列方法。现在还有一点点问题:这里是>=,而选举问题是>。我们假设在2n票之前还有甲的1票,这样计票过程中甲的票数总是严格大于乙。
记“甲乙两人各有n票,计票过程中甲的票数总是>=乙的票数”为情况A,记“甲有n+1票,乙有n票,计票过程中甲的票数总是严格>乙的票数”为情况B,可知A和B可建立一一对应。而B是标准的选举问题,a=n+1, b = n,结果为C(2n+1,n+1)-2C(2n,n+1)=C(2n,n)/(n+1)
情况2个数相同,所以总数是2C(2n,n)/(n+1)