• C++实现矩阵求逆


    最近实现一个算法要用到求逆等矩阵运算,在网上搜到一个别人写的矩阵类,试了一下效果不错,贴在这里,做个保存。

    matrix.h文件:

      1 #ifndef __MATRIX_H__
      2 #define __MATRIX_H__
      3 
      4 #pragma once
      5 
      6 #include <iostream>
      7 #include <fstream>
      8 #include <sstream>
      9 #include <vector>
     10 #include <string>
     11 
     12 using std::vector;
     13 using std::string;
     14 using std::cout;
     15 using std::cin;
     16 using std::istream;
     17 using std::ostream;
     18 
     19 // 任意类型矩阵类
     20 template <typename Object>
     21 class MATRIX
     22 {
     23 public:
     24     explicit MATRIX() : array( 0 ) {}
     25 
     26     MATRIX( int rows, int cols):array( rows )
     27     {
     28         for( int i = 0; i < rows; ++i )
     29         {
     30             array[i].resize( cols );
     31         }
     32     }
     33 
     34     MATRIX( const MATRIX<Object>& m ){ *this = m;}
     35 
     36     void resize( int rows, int cols );           // 改变当前矩阵大小
     37     bool push_back( const vector<Object>& v );   // 在矩阵末尾添加一行数据
     38     void swap_row( int row1, int row2 );         // 将换两行的数据
     39 
     40     int  rows() const{ return array.size(); }
     41     int  cols() const { return rows() ? (array[0].size()) : 0; }
     42     bool empty() const { return rows() == 0; }        // 是否为空
     43     bool square() const { return (!(empty()) && rows() == cols()); }  // 是否为方阵
     44     
     45     
     46     const vector<Object>& operator[](int row) const { return array[row]; } //[]操作符重载 
     47     vector<Object>& operator[](int row){ return array[row]; }
     48     
     49 protected:
     50     vector< vector<Object> > array;
     51 };
     52 
     53 // 改变当前矩阵大小
     54 template <typename Object>
     55 void MATRIX<Object>::resize( int rows, int cols )
     56 {
     57     int rs = this->rows();
     58     int cs = this->cols();
     59 
     60     if ( rows == rs && cols == cs )
     61     {
     62         return;
     63     }
     64     else if ( rows == rs && cols != cs )
     65     {
     66         for ( int i = 0; i < rows; ++i )
     67         {
     68             array[i].resize( cols );
     69         }
     70     }
     71     else if ( rows != rs && cols == cs )
     72     {
     73         array.resize( rows );
     74         for ( int i = rs; i < rows; ++i )
     75         {
     76             array[i].resize( cols );
     77         }
     78     }
     79     else
     80     {
     81         array.resize( rows );
     82         for ( int i = 0; i < rows; ++i )
     83         {
     84             array[i].resize( cols );
     85         }
     86     }
     87 }
     88 
     89 // 在矩阵末尾添加一行
     90 template <typename Object>
     91 bool MATRIX<Object>::push_back( const vector<Object>& v )
     92 {
     93     if ( rows() == 0 || cols() == (int)v.size() )
     94     {
     95         array.push_back( v );
     96     }
     97     else
     98     {
     99         return false;
    100     }
    101 
    102     return true;
    103 }
    104 
    105 // 将换两行
    106 template <typename Object>
    107 void MATRIX<Object>::swap_row( int row1, int row2 )
    108 {
    109     if ( row1 != row2 && row1 >=0 &&
    110         row1 < rows() && row2 >= 0 && row2 < rows() )
    111     {
    112         vector<Object>& v1 = array[row1];
    113         vector<Object>& v2 = array[row2];
    114         vector<Object> tmp = v1;
    115         v1 = v2;
    116         v2 = tmp;
    117     }
    118 }
    119 
    120 // 矩阵转置
    121 template <typename Object>
    122 const MATRIX<Object> trans( const MATRIX<Object>& m )
    123 {
    124     MATRIX<Object> ret;
    125     if ( m.empty() ) return ret;
    126 
    127     int row = m.cols();
    128     int col = m.rows();
    129     ret.resize( row, col );
    130 
    131     for ( int i = 0; i < row; ++i )
    132     {
    133         for ( int j = 0; j < col; ++j )
    134         {
    135             ret[i][j] = m[j][i];
    136         }
    137     }
    138 
    139     return ret;
    140 }
    141 
    142 //////////////////////////////////////////////////////////
    143 // double类型矩阵类,用于科学计算
    144 // 继承自MATRIX类
    145 // 实现常用操作符重载,并实现计算矩阵的行列式、逆以及LU分解
    146 class Matrix:public MATRIX<double>
    147 {
    148 public:
    149     Matrix():MATRIX<double>(){}
    150     Matrix( int c, int r ):MATRIX<double>(c,r){}
    151     Matrix( const Matrix& m){ *this  = m; }
    152 
    153     const Matrix& operator+=( const Matrix& m );
    154     const Matrix& operator-=( const Matrix& m );
    155     const Matrix& operator*=( const Matrix& m );
    156     const Matrix& operator/=( const Matrix& m );
    157 };
    158 
    159 bool  operator==( const Matrix& lhs, const Matrix& rhs );        // 重载操作符==
    160 bool  operator!=( const Matrix& lhs, const Matrix& rhs );        // 重载操作符!=
    161 const Matrix operator+( const Matrix& lhs, const Matrix& rhs );  // 重载操作符+
    162 const Matrix operator-( const Matrix& lhs, const Matrix& rhs );  // 重载操作符-
    163 const Matrix operator*( const Matrix& lhs, const Matrix& rhs );  // 重载操作符*
    164 const Matrix operator/( const Matrix& lhs, const Matrix& rhs );  // 重载操作符/
    165 const double det( const Matrix& m );                             // 计算行列式
    166 const double det( const Matrix& m, int start, int end );         // 计算子矩阵行列式
    167 const Matrix abs( const Matrix& m );                             // 计算所有元素的绝对值
    168 const double max( const Matrix& m );                             // 所有元素的最大值
    169 const double max( const Matrix& m, int& row, int& col);          // 所有元素中的最大值及其下标
    170 const double min( const Matrix& m );                             // 所有元素的最小值
    171 const double min( const Matrix& m, int& row, int& col);          // 所有元素的最小值及其下标
    172 const Matrix trans( const Matrix& m );                           // 返回转置矩阵
    173 const Matrix submatrix(const Matrix& m,int rb,int re,int cb,int ce);  // 返回子矩阵
    174 const Matrix inverse( const Matrix& m );                         // 计算逆矩阵
    175 const Matrix LU( const Matrix& m );                              // 计算方阵的LU分解
    176 const Matrix readMatrix( istream& in = std::cin );               // 从指定输入流读入矩阵
    177 const Matrix readMatrix( string file );                          // 从文本文件读入矩阵
    178 const Matrix loadMatrix( string file );                          // 从二进制文件读取矩阵
    179 void  printMatrix( const Matrix& m, ostream& out = std::cout );  // 从指定输出流打印矩阵
    180 void  printMatrix( const Matrix& m, string file);                // 将矩阵输出到文本文件
    181 void  saveMatrix( const Matrix& m, string file);                 // 将矩阵保存为二进制文件
    182 
    183 
    184 #endif 

    matrix.cpp文件:

      1 #include "Matrix.h"  
      2 #include <iomanip>  //用于设置输出格式  
      3   
      4 using std::ifstream;  
      5 using std::ofstream;  
      6 using std::istringstream;  
      7 using std::cerr;  
      8 using std::endl;  
      9   
     10 const Matrix& Matrix::operator+=( const Matrix& m )  
     11 {  
     12     if ( rows() != m.rows() || rows() != m.cols() )  
     13     {  
     14         return *this;  
     15     }  
     16   
     17     int r = rows();  
     18     int c = cols();  
     19   
     20     for ( int i = 0; i < r; ++i )  
     21     {  
     22         for ( int j = 0; j < c; ++j )  
     23         {  
     24             array[i][j] += m[i][j];  
     25         }  
     26     }  
     27   
     28     return *this;  
     29 }  
     30   
     31   
     32 const Matrix& Matrix::operator-=( const Matrix& m )  
     33 {  
     34     if ( rows() != m.rows() || cols() != m.cols() )  
     35     {  
     36         return *this;  
     37     }  
     38   
     39     int r = rows();  
     40     int c = cols();  
     41   
     42     for ( int i = 0; i < r; ++i )  
     43     {  
     44         for ( int j = 0; j < c; ++j )  
     45         {  
     46             array[i][j] -= m[i][j];  
     47         }  
     48     }  
     49   
     50     return *this;  
     51 }  
     52   
     53 const Matrix& Matrix::operator*=( const Matrix& m )  
     54 {  
     55     if ( cols() != m.rows() || !m.square() )  
     56     {  
     57         return *this;  
     58     }  
     59   
     60     Matrix ret( rows(), cols() );  
     61   
     62     int r = rows();  
     63     int c = cols();  
     64   
     65     for ( int i = 0; i < r; ++i )  
     66     {  
     67         for ( int j = 0; j < c; ++j )  
     68         {  
     69             double sum = 0.0;  
     70             for ( int k = 0; k < c; ++k )  
     71             {  
     72                 sum += array[i][k] * m[k][j];  
     73             }  
     74             ret[i][j] = sum;  
     75         }  
     76     }  
     77   
     78     *this = ret;  
     79     return *this;  
     80 }  
     81   
     82 const Matrix& Matrix::operator/=( const Matrix& m )  
     83 {  
     84     Matrix tmp = inverse( m );  
     85     return operator*=( tmp );  
     86 }  
     87   
     88   
     89 bool operator==( const Matrix& lhs, const Matrix& rhs )  
     90 {  
     91     if ( lhs.rows() != rhs.rows() || lhs.cols() != rhs.cols() )  
     92     {  
     93         return false;  
     94     }  
     95   
     96     for ( int i = 0; i < lhs.rows(); ++i )  
     97     {  
     98         for ( int j = 0; j < lhs.cols(); ++j )  
     99         {  
    100             if ( rhs[i][j] != rhs[i][j] )  
    101             {  
    102                 return false;  
    103             }  
    104         }  
    105     }  
    106   
    107     return true;  
    108 }  
    109   
    110 bool operator!=( const Matrix& lhs, const Matrix& rhs )  
    111 {  
    112     return !( lhs == rhs );  
    113 }  
    114   
    115 const Matrix operator+( const Matrix& lhs, const Matrix& rhs )  
    116 {  
    117     Matrix m;  
    118     if ( lhs.rows() != rhs.rows() || lhs.cols() != rhs.cols() )  
    119     {  
    120         return m;  
    121     }  
    122   
    123     m = lhs;  
    124     m += rhs;  
    125   
    126     return m;  
    127 }  
    128   
    129 const Matrix operator-( const Matrix& lhs, const Matrix& rhs )  
    130 {  
    131     Matrix m;  
    132     if ( lhs.rows() != rhs.rows() || lhs.cols() != rhs.cols() )  
    133     {  
    134         return m;  
    135     }  
    136   
    137     m = lhs;  
    138     m -= rhs;  
    139   
    140     return m;  
    141 }  
    142   
    143 const Matrix operator*( const Matrix& lhs, const Matrix& rhs )  
    144 {  
    145     Matrix m;  
    146     if ( lhs.cols() != rhs.rows() )  
    147     {  
    148         return m;  
    149     }  
    150   
    151     m.resize( lhs.rows(), rhs.cols() );  
    152   
    153     int r = m.rows();  
    154     int c = m.cols();  
    155     int K = lhs.cols();  
    156   
    157     for ( int i = 0; i < r; ++i )  
    158     {  
    159         for ( int j = 0; j < c; ++j )  
    160         {  
    161             double sum = 0.0;  
    162             for ( int k = 0; k < K; ++k )  
    163             {  
    164                 sum += lhs[i][k] * rhs[k][j];  
    165             }  
    166             m[i][j] = sum;  
    167         }  
    168     }  
    169   
    170     return m;  
    171 }  
    172   
    173 const Matrix operator/( const Matrix& lhs, const Matrix& rhs )  
    174 {  
    175     Matrix tmp = inverse( rhs );  
    176     Matrix m;  
    177   
    178     if ( tmp.empty() )  
    179     {  
    180         return m;  
    181     }  
    182   
    183     return m = lhs * tmp;  
    184 }  
    185   
    186 inline static double LxAbs( double d )  
    187 {  
    188     return (d>=0)?(d):(-d);  
    189 }  
    190   
    191 inline   
    192 static bool isSignRev( const vector<double>& v )  
    193 {  
    194     int p = 0;  
    195     int sum = 0;  
    196     int n = (int)v.size();  
    197   
    198     for ( int i = 0; i < n; ++i )  
    199     {  
    200         p = (int)v[i];  
    201         if ( p >= 0 )  
    202         {  
    203             sum += p + i;  
    204         }  
    205     }  
    206   
    207     if ( sum % 2 == 0 ) // 如果是偶数,说明不变号  
    208     {  
    209         return false;  
    210     }  
    211     return true;  
    212 }  
    213   
    214 // 计算方阵行列式  
    215 const double det( const Matrix& m )  
    216 {  
    217     double ret = 0.0;  
    218   
    219     if ( m.empty() || !m.square() ) return ret;  
    220   
    221     Matrix N = LU( m );  
    222   
    223     if ( N.empty() ) return ret;  
    224   
    225     ret = 1.0;  
    226     for ( int i = 0; i < N.cols(); ++ i )  
    227     {  
    228         ret *= N[i][i];  
    229     }  
    230   
    231     if ( isSignRev( N[N.rows()-1] ))  
    232     {  
    233         return -ret;  
    234     }  
    235   
    236     return ret;  
    237 }  
    238   
    239 // 计算矩阵指定子方阵的行列式   
    240 const double det( const Matrix& m, int start, int end )  
    241 {  
    242     return det( submatrix(m, start, end, start, end) );  
    243 }  
    244   
    245   
    246 // 计算矩阵转置  
    247 const Matrix trans( const Matrix& m )  
    248 {  
    249     Matrix ret;  
    250     if ( m.empty() ) return ret;  
    251   
    252     int r = m.cols();  
    253     int c = m.rows();  
    254   
    255     ret.resize(r, c);  
    256     for ( int i = 0; i < r; ++i )  
    257     {  
    258         for ( int j = 0; j < c; ++j )  
    259         {  
    260             ret[i][j] = m[j][i];  
    261         }  
    262     }  
    263   
    264     return ret;  
    265 }  
    266   
    267 // 计算逆矩阵  
    268 const Matrix  inverse( const Matrix& m )   
    269 {  
    270     Matrix ret;  
    271   
    272     if ( m.empty() || !m.square() )  
    273     {  
    274         return ret;  
    275     }  
    276   
    277     int n = m.rows();  
    278   
    279     ret.resize( n, n );  
    280     Matrix A(m);  
    281   
    282     for ( int i = 0; i < n; ++i ) ret[i][i] = 1.0;  
    283   
    284     for ( int j = 0; j < n; ++j )  //每一列  
    285     {  
    286         int p = j;  
    287         double maxV = LxAbs(A[j][j]);  
    288         for ( int i = j+1; i < n; ++i )  // 找到第j列中元素绝对值最大行  
    289         {  
    290             if ( maxV < LxAbs(A[i][j]) )  
    291             {  
    292                 p = i;  
    293                 maxV = LxAbs(A[i][j]);  
    294             }  
    295         }  
    296   
    297         if ( maxV < 1e-20 )   
    298         {  
    299             ret.resize(0,0);  
    300             return ret;  
    301         }  
    302   
    303         if ( j!= p )  
    304         {  
    305             A.swap_row( j, p );  
    306             ret.swap_row( j, p );  
    307         }  
    308           
    309         double d = A[j][j];  
    310         for ( int i = j; i < n; ++i ) A[j][i] /= d;  
    311         for ( int i = 0; i < n; ++i ) ret[j][i] /= d;  
    312   
    313         for ( int i = 0; i < n; ++i )  
    314         {  
    315             if ( i != j )  
    316             {  
    317                 double q = A[i][j];  
    318                 for ( int k = j; k < n; ++k )  
    319                 {  
    320                     A [i][k] -= q * A[j][k];  
    321                 }  
    322                 for ( int k = 0; k < n; ++k )  
    323                 {  
    324                     ret[i][k] -= q * ret[j][k];  
    325                 }  
    326             }  
    327         }  
    328     }  
    329   
    330     return ret;  
    331 }  
    332   
    333 // 计算绝对值  
    334 const Matrix abs( const Matrix& m )  
    335 {  
    336     Matrix ret;  
    337   
    338     if( m.empty() )  
    339     {  
    340         return ret;  
    341     }  
    342   
    343     int r = m.rows();  
    344     int c = m.cols();  
    345     ret.resize( r, c );  
    346   
    347     for ( int i = 0; i < r; ++i )  
    348     {  
    349         for ( int j = 0; j < c; ++j )  
    350         {  
    351             double t = m[i][j];  
    352             if ( t < 0 ) ret[i][j] = -t;  
    353             else ret[i][j] = t;  
    354         }  
    355     }  
    356   
    357     return ret;  
    358 }  
    359   
    360 // 返回矩阵所有元素的最大值  
    361 const double max( const Matrix& m )  
    362 {  
    363     if ( m.empty() ) return 0.;  
    364       
    365     double ret = m[0][0];  
    366     int r = m.rows();  
    367     int c = m.cols();  
    368   
    369     for ( int i = 0; i < r; ++i )  
    370     {  
    371         for ( int j = 0; j < c; ++j )  
    372         {  
    373             if ( m[i][j] > ret ) ret = m[i][j];  
    374         }  
    375     }  
    376     return ret;  
    377 }  
    378   
    379 // 计算矩阵最大值,并返回该元素的引用  
    380 const double max( const Matrix& m, int& row, int& col )  
    381 {  
    382     if ( m.empty() ) return 0.;  
    383   
    384     double ret = m[0][0];  
    385     row = 0;  
    386     col = 0;  
    387   
    388     int r = m.rows();  
    389     int c = m.cols();  
    390   
    391     for ( int i = 0; i < r; ++i )  
    392     {  
    393         for ( int j = 0; j < c; ++j )  
    394         {  
    395             if ( m[i][j] > ret )  
    396             {  
    397                 ret = m[i][j];  
    398                 row = i;  
    399                 col = j;  
    400             }  
    401         }  
    402     }  
    403     return ret;  
    404 }  
    405   
    406 // 计算矩阵所有元素最小值  
    407 const double min( const Matrix& m )  
    408 {  
    409     if ( m.empty() ) return 0.;  
    410   
    411     double ret = m[0][0];  
    412     int r = m.rows();  
    413     int c = m.cols();  
    414   
    415     for ( int i = 0; i < r; ++i )  
    416     {  
    417         for ( int j = 0; j < c; ++j )  
    418         {  
    419             if ( m[i][j] > ret ) ret = m[i][j];  
    420         }  
    421     }  
    422   
    423     return ret;  
    424 }  
    425   
    426 // 计算矩阵最小值,并返回该元素的引用  
    427 const double min( const Matrix& m, int& row, int& col)  
    428 {  
    429     if ( m.empty() ) return 0.;  
    430   
    431     double ret = m[0][0];  
    432     row = 0;  
    433     col = 0;  
    434     int r = m.rows();  
    435     int c = m.cols();  
    436   
    437     for ( int i = 0; i < r; ++i )  
    438     {  
    439         for ( int j = 0; j < c; ++j )  
    440         {  
    441             if ( m[i][j] > ret )  
    442             {  
    443                 ret = m[i][j];  
    444                 row = i;  
    445                 col = j;  
    446             }  
    447         }  
    448     }  
    449   
    450     return ret;  
    451 }  
    452   
    453 // 取矩阵中指定位置的子矩阵   
    454 const Matrix submatrix(const Matrix& m,int rb,int re,int cb,int ce)  
    455 {  
    456     Matrix ret;  
    457     if ( m.empty() ) return ret;  
    458   
    459     if ( rb < 0 || re >= m.rows() || rb > re ) return ret;  
    460     if ( cb < 0 || ce >= m.cols() || cb > ce ) return ret;  
    461   
    462     ret.resize( re-rb+1, ce-cb+1 );  
    463   
    464     for ( int i = rb; i <= re; ++i )  
    465     {  
    466         for ( int j = cb; j <= ce; ++j )  
    467         {  
    468             ret[i-rb][j-cb] = m[i][j];  
    469         }  
    470     }  
    471   
    472     return ret;  
    473 }  
    474   
    475   
    476 inline static  
    477 int max_idx( const Matrix& m, int k, int n )  
    478 {  
    479     int p = k;  
    480     for ( int i = k+1; i < n; ++i )  
    481     {  
    482         if ( LxAbs(m[p][k]) < LxAbs(m[i][k]) )  
    483         {  
    484             p = i;  
    485         }  
    486     }  
    487     return p;  
    488 }  
    489   
    490 // 计算方阵 M 的 LU 分解  
    491 // 其中L为对角线元素全为1的下三角阵,U为对角元素依赖M的上三角阵  
    492 // 使得 M = LU  
    493 // 返回矩阵下三角部分存储L(对角元素除外),上三角部分存储U(包括对角线元素)  
    494 const Matrix LU( const Matrix& m )  
    495 {  
    496     Matrix ret;  
    497   
    498     if ( m.empty() || !m.square() ) return ret;  
    499   
    500     int n = m.rows();  
    501     ret.resize( n+1, n );  
    502   
    503     for ( int i = 0; i < n; ++i )  
    504     {  
    505         ret[n][i] = -1.0;  
    506     }  
    507   
    508     for ( int i = 0; i < n; ++i )  
    509     {  
    510         for ( int j = 0; j < n; ++j )  
    511         {  
    512             ret[i][j] = m[i][j];  
    513         }  
    514     }  
    515   
    516     for ( int k = 0; k < n-1; ++k )  
    517     {  
    518         int p = max_idx( ret, k, n );  
    519         if ( p != k )              // 进行行交换  
    520         {  
    521             ret.swap_row( k, p );  
    522             ret[n][k] = (double)p; // 记录将换信息  
    523         }  
    524   
    525         if ( ret[k][k] == 0.0 )  
    526         {  
    527             cout << "ERROR: " << endl;  
    528             ret.resize(0,0);  
    529             return ret;  
    530         }  
    531   
    532         for ( int i = k+1; i < n; ++i )  
    533         {  
    534             ret[i][k] /= ret[k][k];  
    535             for ( int j = k+1; j < n; ++j )  
    536             {  
    537                 ret[i][j] -= ret[i][k] * ret[k][j];  
    538             }  
    539         }  
    540     }  
    541   
    542     return ret;  
    543 }  
    544   
    545 //---------------------------------------------------  
    546 //                      读取和打印  
    547 //---------------------------------------------------  
    548 // 从输入流读取矩阵  
    549 const Matrix readMatrix( istream& in )  
    550 {  
    551     Matrix M;  
    552     string str;  
    553     double b;  
    554     vector<double> v;  
    555   
    556     while( getline( in, str )  )  
    557     {  
    558         for ( string::size_type i = 0; i < str.size(); ++i )  
    559         {  
    560             if ( str[i] == ',' || str[i] == ';')  
    561             {  
    562                 str[i] = ' ';  
    563             }  
    564             else if ( str[i] != '.' && (str[i] < '0' || str[i] > '9')   
    565                 && str[i] != ' ' && str[i] != '	' && str[i] != '-')  
    566             {  
    567                 M.resize(0,0);  
    568                 return M;  
    569             }  
    570         }  
    571   
    572         istringstream sstream(str);  
    573         v.resize(0);  
    574   
    575         while ( sstream >> b )  
    576         {  
    577             v.push_back(b);  
    578         }  
    579         if ( v.size() == 0 )  
    580         {  
    581             continue;  
    582         }  
    583         if ( !M.push_back( v ) )  
    584         {  
    585             M.resize( 0, 0 );  
    586             return M;  
    587         }  
    588     }  
    589   
    590     return M;  
    591 }  
    592   
    593 // 从文本文件读入矩阵  
    594 const Matrix readMatrix( string file )  
    595 {  
    596     ifstream fin( file.c_str() );  
    597     Matrix M;  
    598   
    599     if ( !fin )  
    600     {  
    601         cerr << "Error: open file " << file << " failed." << endl;  
    602         return M;  
    603     }  
    604   
    605     M = readMatrix( fin );  
    606     fin.close();  
    607   
    608     return M;  
    609 }  
    610   
    611 // 将矩阵输出到指定输出流  
    612 void printMatrix( const Matrix& m, ostream& out )  
    613 {  
    614     if ( m.empty() )  
    615     {  
    616         return;  
    617     }  
    618   
    619     int r = m.rows();  
    620     int c = m.cols();  
    621   
    622     int n = 0;              // 数据小数点前最大位数  
    623     double maxV = max(abs(m));  
    624     while( maxV >= 1.0 )  
    625     {  
    626         maxV /= 10;  
    627         ++n;  
    628     }  
    629     if ( n == 0 ) n = 1;    // 如果最大数绝对值小于1,这小数点前位数为1,为数字0  
    630     int pre = 4;            // 小数点后数据位数  
    631     int wid = n + pre + 3;  // 控制字符宽度=n+pre+符号位+小数点位  
    632   
    633     out<<std::showpoint;  
    634     out<<std::setiosflags(std::ios::fixed);  
    635     out<<std::setprecision( pre );  
    636     for ( int i = 0; i < r; ++i )  
    637     {  
    638         for ( int j = 0; j < c; ++j )  
    639         {  
    640             out<<std::setw(wid) << m[i][j];  
    641         }  
    642         out << endl;  
    643     }  
    644   
    645     out<<std::setprecision(6);  
    646     out<<std::noshowpoint;  
    647 }  
    648   
    649 // 将矩阵打印到指定文件   
    650 void printMatrix( const Matrix& m, string file )  
    651 {  
    652     ofstream fout( file.c_str() );  
    653     if ( !fout ) return;  
    654   
    655     printMatrix( m, fout );  
    656     fout.close();  
    657 }  
    658   
    659 // 将矩阵数据存为二进制文件   
    660 void saveMatrix( const Matrix& m, string file )  
    661 {  
    662     if ( m.empty() ) return;  
    663   
    664     ofstream fout(file.c_str(), std::ios_base::out|std::ios::binary );  
    665     if ( !fout ) return;  
    666   
    667     int r = m.rows();  
    668     int c = m.cols();  
    669     char Flag[12] = "MATRIX_DATA";  
    670     fout.write( (char*)&Flag, sizeof(Flag) );  
    671     fout.write( (char*)&r, sizeof(r) );  
    672     fout.write( (char*)&c, sizeof(c) );  
    673   
    674     for ( int i = 0; i < r; ++i )  
    675     {  
    676         for ( int j = 0; j < c; ++j )  
    677         {  
    678             double t = m[i][j];  
    679             fout.write( (char*)&t, sizeof(t) );  
    680         }  
    681     }  
    682   
    683     fout.close();  
    684 }  
    685   
    686 // 从二进制文件load矩阵  
    687 const Matrix loadMatrix( string file )  
    688 {  
    689     Matrix m;  
    690   
    691     ifstream fin( file.c_str(), std::ios_base::in|std::ios::binary );  
    692     if ( !fin ) return m;  
    693   
    694     char Flag[12];  
    695     fin.read((char*)&Flag, sizeof(Flag));  
    696   
    697     string str( Flag );  
    698     if ( str != "MATRIX_DATA" )  
    699     {  
    700         return m;  
    701     }  
    702   
    703     int r, c;  
    704     fin.read( (char*)&r, sizeof(r) );  
    705     fin.read( (char*)&c, sizeof(c) );  
    706   
    707     if ( r <=0 || c <=0 ) return m;  
    708   
    709     m.resize( r, c );  
    710     double t;  
    711   
    712     for ( int i = 0; i < r; ++i )  
    713     {  
    714         for ( int j = 0; j < c; ++j )  
    715         {  
    716             fin.read( (char*)&t, sizeof(t) );  
    717             m[i][j] = t;  
    718         }  
    719     }  
    720   
    721     return m;  
    722 }  
  • 相关阅读:
    Android中库项目、jar包等的使用方法
    rman 使用catalog备份的演示
    好端端的项目重新运行的时候却不行了!!!已解决
    动物:河蚌
    动物:田螺
    动物-鱼:鳖
    动物-鱼:鳝鱼
    动物-鱼:柳根鱼
    动物-鱼:泥鳅
    动物-鱼:刺鳅
  • 原文地址:https://www.cnblogs.com/freshmen/p/4467646.html
Copyright © 2020-2023  润新知