前面已经讲解集合中的HashMap并且也对其中使用的红黑树结构做了对应的说明,这次就来看下简单一些的另一个集合类,也是日常经常使用到的ArrayList,整体来说,算是比较好理解的集合了,一起来看下
前言
jdk版本:1.8
类定义
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
- 继承了
AbstractList
,实现了List,提供对数组队列的增删改查操作 - 实现RandomAccess接口,提供随机访问功能
- 实现Cloneable接口,提供克隆功能
- 实现Serializable接口,支持序列化,方便序列化传输
变量说明
private static final long serialVersionUID = 8683452581122892189L;
/**
* 默认的初始化容量
* 这里和HashMap初始容量不同,默认10
* 有些面试官可能问,虽然我感觉没必要记这玩意
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* 空集合,在构造函数中看说明
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* 默认容量大小的空集合,这里和上边一样,但是第一次添加的时候会自动扩容到默认容量,看构造函数的说明
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
*
* 基于数组实现容量大小变化,上边注释也说了第一次添加元素时,将容量扩展到DEFAULT_CAPACITY
* 更详细的接着往下看
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* 数组长度,即arraylist的长度
*/
private int size;
/**
* 最大数组长度限制
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
从上边变量定义也能看出来ArrayList本质上是基于Object[]实现,故方法上的操作都是基于数组来进行
构造方法
从构造方法中能看出:
- 如果不设置初始化容量或者初始化赋值集合则elementData赋值为空数组而不是默认容量为10的数组
/**
* 无参构造方法,初始化为默认空数组
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
// 原集合不为空,则进行复制
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
/**
* 官方bug
* c.toArray() 返回类型取决于其实际类型
* 查了下,应该是调用子类的toArray(重写)方法返回具体的类型
* 自己多想下也明白了,父类保存了子类的数组对象,这里需要调整成Object[]
* 不明白的自己Google下
*/
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// 原集合为空,elementData赋值为空数组
this.elementData = EMPTY_ELEMENTDATA;
}
}
/**
* 初始化容量 代码比较简单
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
重要方法
add
每次增加元素时会通过ensureCapacityInternal进行容量大小的验证,不满足则进行扩容操作,通过grow方法进行扩容操作,在允许的范围上扩容为原来的1.5倍
/**
* 增加元素
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
/**
* 确认容量
*/
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
/**
* 计算容量
* elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* 在这里进行了初始化判断
* 最小容量为10
*/
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
/**
* 修改次数记录modCount,容量是否扩容判断
*/
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* 扩容
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
// 右移操作扩容为原来的1.5倍(位移操作,自己试下就明白)
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 比较最小值
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 比较最大值
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
/**
* 大容量值处理
*/
private static int hugeCapacity(int minCapacity) {
// 溢出抛出异常
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
// 计算超出时取值判断
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
/**
* 将element插入index的位置
*/
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
// native方法实现拷贝
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
addAll
/**
* 先对集合容量进行检查,记录修改次数,调用arraycopy将旧数组元素拷贝到新数组元素中
*/
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
/**
* 和上边不同之处在于将数组拷贝到新数组index位置,其后元素依次排序
*/
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
clear
/**
* 清空
*/
public void clear() {
modCount++;
// clear to let GC do its work
// 注释上也写明了原因,置空为了让GC工作,回收空间
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
contains
/**
* 判断某个元素是否在集合中
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
/**
* 返回元素在集合中的首个索引(从小到大)
* 主要是判空区分
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
get
/**
* 获取索引为index的元素,先检查索引值,再调用elementData方法
*/
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
iterator
/**
* 返回迭代器 内部类实现
*/
public Iterator<E> iterator() {
return new Itr();
}
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
Itr() {}
public boolean hasNext() {
return cursor != size;
}
/**
* 获取索引为cursor的元素,并置cursor = cursor + 1,方便下次调用,lastRet记录当前返回的元素索引
*/
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
/**
* 移除当前lastRet对应元素,cursor置为lastRet,修改次数修改
*/
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
/**
* jdk 1.8新增接口,调用accept接口对每个元素执行动作
*/
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
/**
* 检查
*/
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
lastIndexOf
/**
* 返回匹配对象的首个索引(从大到小)
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
remove
/**
* 删除索引为index的元素
*/
public E remove(int index) {
rangeCheck(index);
//修改记录+1
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
//使用arraycopy重新整理集合
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
/**
* 根据给定的元素删除,这里看源码也能发现,只删除第一个匹配成功的元素即返回
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
removeAll
/**
* 移除所有和参数集合相同的元素
*/
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
}
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
//将保留的数据写回elementData
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
//清理为空的数据
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
set
/**
* 设置索引为index的值为element
*/
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
toArray
/**
* 将list元素拷贝返回
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
subList
/**
* 获取子数组,内部类实现,子数组只是引用了原来的数组,因此改变子数组,相当于改变了原来的数组
* 子数组不再详细说明,ArrayList类相似,只是多了几个成员变量,来限制范围
* 源码部分自行查看
*/
public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
}
总结
整体来看ArrayList源码还是比较简单的,从源码部分也能注意到几个点:
- ArrayList是基于数组实现的集合类
- Object数组可以存放null
- 非线程安全,如需并发线程安全类需使用对应的线程安全包装类保证
- 如已经确定容量大小,可以提前初始化设置好对应容量以减少中间扩容带来的损耗
总的来说,还是相对比较简单了,希望对各位有所帮助,如有错误,欢迎指正,谢谢