• 60-Lowest Common Ancestor of a Binary Search Tree


    1. Lowest Common Ancestor of a Binary Search Tree My Submissions QuestionEditorial Solution
      Total Accepted: 68335 Total Submissions: 181124 Difficulty: Easy
      Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

    According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

        _______6______
       /              
    ___2__          ___8__
    

    / /
    0 _4 7 9
    /
    3 5
    For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
    本题是BST,是二叉查找树
    针对二叉查找树BST的情况

    class Solution {
    public:
        TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
            assert(p!=NULL&&q!=NULL);
            if(root==NULL) return NULL;  
            if(max(p->val, q->val) < root->val) 
                    return lowestCommonAncestor(root->left, p, q);  
            else if(min(p->val, q->val) > root->val) 
                    return lowestCommonAncestor(root->right, p, q);  
                 else return root;  
        }
    };

    针对一般的树有以下解决方法:
    思路:
    判定是否根,是的话返回根,不是
    判定p,q的分布,如下:

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
            assert(p!=NULL&&q!=NULL); //默认p,q不为空,否则为空的不知归为哪个节点
            if(root==NULL)return NULL;
            if(root==p||root==q)return root;
            TreeNode *tmp;
            bool right_p=inTheTree(root->right,p),left_p = inTheTree(root->left,p);
            bool right_q=inTheTree(root->right,q),left_q = inTheTree(root->left,q);
            if((right_p&&left_q)||(right_q&&left_p))return root; //分别在左右子树,返回根
            if(right_p&&right_q)return lowestCommonAncestor(root->right,p,q);//全在右子树,转化为根为右节点的子问题
            if(left_p&&left_q)return lowestCommonAncestor(root->left,p,q);//全在左子树,转化为根为右节点的子问题
            return tmp;
        }
        bool inTheTree(TreeNode* head, TreeNode* p)//判定p是否在树中
        {
            if(head==NULL||p==NULL)return false;
            if(head==p)return true;
            else return inTheTree(head->left,p)||inTheTree(head->right,p);
        }
    };
  • 相关阅读:
    MTLLoader 报 Handlers.get() has been removed. Use LoadingManager.getHandler() instead 错误处理
    uniCloud云开发已实现五端上线【言语录书】
    v-model 双向绑定 vue3.x
    javascript 集合操作
    链表操作
    vue3 父子组件双向数据绑定
    二叉树排序
    自制Chrome扩展插件:用于重定向js
    解析Markdown文件生成React组件文档
    微前端框架single-spa初探
  • 原文地址:https://www.cnblogs.com/freeopen/p/5482898.html
Copyright © 2020-2023  润新知