• 学习OpenCV——HOG+SVM


    #include "cv.h"
    #include "highgui.h"
    #include "stdafx.h"
    #include <ml.h>
    #include <iostream>
    #include <fstream>
    #include <string>
    #include <vector>
    using namespace cv;
    using namespace std;

    int main(int argc, char** argv) 

        vector<string> img_path;
        vector<int> img_catg;
        int nLine = 0;
        string buf;
        ifstream svm_data( "E:/SVM_DATA.txt" );
        unsigned long n;

        while( svm_data )
        {
            if( getline( svm_data, buf ) )
            {
                nLine ++;
                if( nLine % 2 == 0 )
                {
                     img_catg.push_back( atoi( buf.c_str() ) );//atoi将字符串转换成整型,标志(0,1)
                }
                else
                {
                    img_path.push_back( buf );//图像路径
                }
            }
        }
        svm_data.close();//关闭文件

        CvMat *data_mat, *res_mat;
        int nImgNum = nLine / 2;            //读入样本数量
        ////样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小
        data_mat = cvCreateMat( nImgNum, 1764, CV_32FC1 );
        cvSetZero( data_mat );
        //类型矩阵,存储每个样本的类型标志
        res_mat = cvCreateMat( nImgNum, 1, CV_32FC1 );
        cvSetZero( res_mat );

        IplImage* src;
        IplImage* trainImg=cvCreateImage(cvSize(64,64),8,3);//需要分析的图片

        for( string::size_type i = 0; i != img_path.size(); i++ )
        {
                src=cvLoadImage(img_path[i].c_str(),1);
                if( src == NULL )
                {
                    cout<<" can not load the image: "<<img_path[i].c_str()<<endl;
                    continue;
                }

                cout<<" processing "<<img_path[i].c_str()<<endl;
                cvResize(src,trainImg);   //读取图片  
                HOGDescriptor *hog=new HOGDescriptor(cvSize(64,64),cvSize(16,16),cvSize(8,8),cvSize(8,8),9);  //具体意思见参考文章1,2  
                vector<float>descriptors;//结果数组  
                hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算  
                cout<<"HOG dims: "<<descriptors.size()<<endl;
                //CvMat* SVMtrainMat=cvCreateMat(descriptors.size(),1,CV_32FC1);
                n=0;
                for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
                {
                    cvmSet(data_mat,i,n,*iter);
                    n++;
                }
                    //cout<<SVMtrainMat->rows<<endl;
                cvmSet( res_mat, i, 0, img_catg[i] );
                cout<<" end processing "<<img_path[i].c_str()<<" "<<img_catg[i]<<endl;
        }
        CvSVM svm = CvSVM(); 
        CvSVMParams param; 
        CvTermCriteria criteria; 
        criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON ); 
        param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria ); 
    /*  
        SVM种类:CvSVM::C_SVC  
        Kernel的种类:CvSVM::RBF  
        degree:10.0(此次不使用)  
        gamma:8.0  
        coef0:1.0(此次不使用)  
        C:10.0  
        nu:0.5(此次不使用)  
        p:0.1(此次不使用)  
        然后对训练数据正规化处理,并放在CvMat型的数组里。  
                                                            */    
        //☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆      
        svm.train( data_mat, res_mat, NULL, NULL, param ); 
        //☆☆利用训练数据和确定的学习参数,进行SVM学习☆☆☆☆  
        svm.save( "SVM_DATA.xml" ); 

        //检测样本
        IplImage *test;
        vector<string> img_tst_path;
        ifstream img_tst( "E:/SVM_TEST.txt" );
        while( img_tst )
        {
            if( getline( img_tst, buf ) )
            {
                img_tst_path.push_back( buf );
            }
        }
        img_tst.close();

        CvMat *test_hog = cvCreateMat( 1, 1764, CV_32FC1 );
        char line[512];
        ofstream predict_txt( "SVM_PREDICT.txt" );
        for( string::size_type j = 0; j != img_tst_path.size(); j++ )
        {
            test = cvLoadImage( img_tst_path[j].c_str(), 1);
            if( test == NULL )
            {
                 cout<<" can not load the image: "<<img_tst_path[j].c_str()<<endl;
                   continue;
             }
            cvZero(trainImg);
            cvResize(test,trainImg);   //读取图片  
            HOGDescriptor *hog=new HOGDescriptor(cvSize(64,64),cvSize(16,16),cvSize(8,8),cvSize(8,8),9);  //具体意思见参考文章1,2  
            vector<float>descriptors;//结果数组  
            hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算  
            cout<<"HOG dims: "<<descriptors.size()<<endl;
            CvMat* SVMtrainMat=cvCreateMat(1,descriptors.size(),CV_32FC1);
            n=0;
            for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
                {
                    cvmSet(SVMtrainMat,0,n,*iter);
                    n++;
                }

            int ret = svm.predict(SVMtrainMat);
            sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret );
             predict_txt<<line;
        }
        predict_txt.close();

    //cvReleaseImage( &src);
    //cvReleaseImage( &sampleImg );
    //cvReleaseImage( &tst );
    //cvReleaseImage( &tst_tmp );
    cvReleaseMat( &data_mat );
    cvReleaseMat( &res_mat );

    return 0;
    }

    【转】http://blog.csdn.net/sangni007/article/details/7471222

  • 相关阅读:
    C语言写的trim()函数
    TCP/IP和Socket的关系
    sizeof(数组名)和sizeof(指针)
    字符数组和结束符/0之间的关系
    C语言中二维字符数组的定义和初始化
    异步套接字基础:select函数以及FD_ZERO、FD_SET、FD_CLR、FD_ISSET
    do{...}while(0)的意义和用法
    Mirror--如何在主库上增加文件
    曲苑杂坛--收缩数据库文件
    常用脚本--SQL Server获取OS日志
  • 原文地址:https://www.cnblogs.com/freedesert/p/2824330.html
Copyright © 2020-2023  润新知