Disjoint-set data structure
通过路径压缩实现最常用的并查集
题目链接: Luogu P3367 【模板】并查集
时间复杂度:
MakeSet
: (Theta(n))Find
: (Theta(alpha(n)))Union
: (Theta(alpha(n)))
((alpha(n))为inverse Ackermann function)
#include <cstdio>
int parent[10010];
int n, m, opt, u, v;
inline void MakeSet(const int &maximum) {
for (register int i(0); i <= maximum; ++i) {
parent[i] = i;
}
}
inline int Find(const int &cur) {
return cur == parent[cur] ? cur : parent[cur] = Find(parent[cur]);
}
inline void Union(const int &x, const int &y) {
parent[Find(y)] = Find(x);
}
int main(int argc, char const *argv[]) {
scanf("%d %d", &n, &m);
MakeSet(n);
while (m--) {
scanf("%d %d %d", &opt, &u, &v);
switch (opt) {
case 1: {
Union(u, v);
break;
}
case 2: {
puts(Find(u) == Find(v) ? "Y" : "N");
break;
}
}
}
return 0;
}
Heap
由于C++中包含用堆实现的priority_queue
, 就不手写了。
题目链接: Luogu P3378 【模板】堆
时间复杂度:
top
: (Theta(1))pop
: (Theta(lg n))push
: (Theta(lg n))
#include <queue>
#include <cstdio>
std::priority_queue<int, std::vector<int>, std::greater<int> > Q;
int n, opt, x;
int main(int argc, char const *argv[]) {
scanf("%d", &n);
while (n--) {
scanf("%d", &opt);
switch (opt) {
case 1: {
scanf("%d", &x);
Q.push(x);
break;
}
case 2: {
printf("%d
", Q.top());
break;
}
case 3: {
Q.pop();
break;
}
}
}
return 0;
}
Fenwick tree
也叫binary indexed tree
时间复杂度:
LOWBIT
: (Theta(1))Sum
: (Theta(lg n))Add
: (Theta(lg n))
单点修改 + 区间查询
题目链接: Luogu P3374 【模板】树状数组 1
#include <cstdio>
#define LOWBIT(a) (a & -a)
int fenwick_tree[500010], n;
inline int Sum(register int index) {
register int ret(0);
while (index) {
ret += fenwick_tree[index],
index -= LOWBIT(index);
}
return ret;
}
inline void Add(register int index, const int &kDelta) {
while (index <= n) {
fenwick_tree[index] += kDelta,
index += LOWBIT(index);
}
}
#undef LOWBIT
int m, opt, x, y;
int main(int argc, char const *argv[]) {
scanf("%d %d", &n, &m);
for (register int i(1); i <= n; ++i) {
scanf("%d", &y),
Add(i, y);
}
while (m--) {
scanf("%d %d %d", &opt, &x, &y);
switch (opt) {
case 1: {
Add(x, y);
break;
}
case 2: {
printf("%d
", Sum(y) - Sum(x - 1));
break;
}
}
}
return 0;
}
区间修改 + 单点查询
原树状数组的基础上使用差分。
题目链接: Luogu P3368 【模板】树状数组 2
#include <cstdio>
#define LOWBIT(a) (a & -a)
int fenwick_tree[500010], n;
inline int Sum(register int index) {
register int ret(0);
while (index) {
ret += fenwick_tree[index],
index -= LOWBIT(index);
}
return ret;
}
inline void Add(register int index, const int &kDelta) {
while (index <= n) {
fenwick_tree[index] += kDelta,
index += LOWBIT(index);
}
}
#undef LOWBIT
int m, opt, x, y, k;
int main(int argc, char const *argv[]) {
scanf("%d %d", &n, &m);
for (register int i(1); i <= n; ++i) {
scanf("%d", &y),
Add(i, y - x),
x = y;
}
while (m--) {
scanf("%d %d", &opt, &x);
switch (opt) {
case 1: {
scanf("%d %d", &y, &k);
Add(x, k), Add(y + 1, -k);
break;
}
case 2: {
printf("%d
", Sum(x));
break;
}
}
}
return 0;
}
区间修改 + 区间查询
仍然使用了差分, 推导过程如下:
设原数组为(a_n), 考虑一个差分数组(b_n = a_n - a_{n - 1})(约定(b_0 = 0)), 可以得到
[egin {aligned}
sum_{i = 1}^n a_i &= sum_{i = 1}^n sum_{j = 1}^i b_i \
&= sum_{i = 1}^{n - i + 1} b_i \
&= sum_{i = 1}^n (n + 1 - i)b_i \
&= (n + 1)sum_{i = 1}^n b_i - sum_{i = 1}^n ib_i
end {aligned}
]
写的简单易懂就是
[egin{aligned}
&a_1 + a_2 + cdots + a_{n - 1} + a_n \
= &b_1 + (b_1 + b_2) + cdots + (b_1 + b_2 + cdots + b_{n - 2} + b_{n - 1}) + (b_1 + b_2 + cdots + b_{n - 1} + b_n)\
= &nb_1 + (n - 1)b_2 + cdots + 2b_{n - 1} + b_n\
= &(n + 1 - 1)b_1 + (n + 1 - 2)b_2 + cdots + [n + 1 - (n - 1)]b_{n - 1} + (n + 1 - n)b_n\
= &(n + 1)(b_1 + b_2 + cdots + b_{n - 1} + b_n) - (b_1 + 2b_2 + cdots + (n - 1)b_{n - 1} + nb_n)
end{aligned}
]
把(b_i)和(ib_i)分别用两个树状数组维护就可以了。
题目链接: Luogu P3372 【模板】线段树 1
#include <cstdio>
#define LOWBIT(a) (a & -a)
long long fenwick_tree1[100010], fenwick_tree2[100010];
int n;
inline long long Sum(const long long *fenwick_tree, register int index) {
register long long ret(0ll);
while (index) {
ret += fenwick_tree[index],
index -= LOWBIT(index);
}
return ret;
}
inline void Add(register long long *fenwick_tree, register int index, const long long &kDelta) {
while (index <= n) {
fenwick_tree[index] += kDelta,
index += LOWBIT(index);
}
}
#undef LOWBIT
int m, opt;
long long x, y, k;
int main(int argc, char const *argv[]) {
scanf("%d %d", &n, &m);
for (register int i(1); i <= n; ++i) {
scanf("%lld", &y);
Add(fenwick_tree1, i, y - x), Add(fenwick_tree2, i, i * (y - x));
x = y;
}
while (m--) {
scanf("%d %lld %lld", &opt, &x, &y);
switch (opt) {
case 1: {
scanf("%lld", &k);
Add(fenwick_tree1, x, k), Add(fenwick_tree1, y + 1, -k),
Add(fenwick_tree2, x, x * k), Add(fenwick_tree2, y + 1, (y + 1) * -k);
break;
}
case 2: {
printf("%lld
", (y + 1) * Sum(fenwick_tree1, y) - x * Sum(fenwick_tree1, x - 1) - (Sum(fenwick_tree2, y) - Sum(fenwick_tree2, x - 1)));
break;
}
}
}
return 0;
}
Segment tree
只放一个板子题吧, 记住框架就行。
时间复杂度:
Construct
: (Theta(n lg n))Update
: (Theta(1))PushDown
: (Theta(1))Sum
: (Omega(lg n))Query
: (Omega(lg n))
题目链接: Luogu P3372 【模板】线段树 1
#include <cstdio>
struct SegmentTree {
long long value, delta;
int l, r;
SegmentTree *left, *right;
SegmentTree(const long long &val = 0) {
value = val, delta = 0;
left = right = nullptr;
l = r = 0;
}
inline void Update() {
this->value = (this->left ? this->left->value : 0ll) + (this->right ? this->right->value : 0ll);
}
inline void PushDown() {
if (this->delta && this->left) {
this->left->value += (this->left->r - this->left->l + 1) * this->delta,
this->right->value += (this->right->r - this->right->l + 1) * this->delta;
this->left->delta += this->delta,
this->right->delta += this->delta;
this->delta = 0ll;
}
}
SegmentTree(const int &le, const int &ri) {
this->l = le, this->r = ri;
this->left = this->right = nullptr;
this->delta = 0ll;
if (le == ri) {
scanf("%lld", &this->value);
} else {
register int mid((le + ri) >> 1);
this->left = new SegmentTree(le, mid);
this->right = new SegmentTree(mid + 1, ri);
this->Update();
}
}
~SegmentTree() {
if (left) {
delete left;
delete right;
}
}
inline long long Query(const int &le, const int &ri) {
if (le <= this->l && this->r <= ri) {
return this->value;
} else {
this->PushDown();
register int mid((this->l + this->r) >> 1);
return (le <= mid ? this->left->Query(le, ri) : 0ll) + (mid < ri ? this->right->Query(le, ri) : 0ll);
}
}
inline void Add(const int &le, const int &ri, const long long &kDelta) {
if (le <= this->l && this->r <= ri) {
this->value += (this->r - this->l + 1) * kDelta,
this->delta += kDelta;
} else {
this->PushDown();
register int mid((this->l + this->r) >> 1);
if (le <= mid) {
this->left->Add(le, ri, kDelta);
}
if (mid < ri) {
this->right->Add(le, ri, kDelta);
}
this->Update();
}
}
} *root;
int n, m, opt, x, y;
long long k;
int main(int argc, char const *argv[]) {
scanf("%d %d", &n, &m);
root = new SegmentTree(1, n);
while (m--) {
scanf("%d %d %d", &opt, &x, &y);
switch (opt) {
case 1: {
scanf("%lld", &k);
root->Add(x, y, k);
break;
}
case 2: {
printf("%lld
", root->Query(x, y));
break;
}
}
}
return 0;
}
Heavy path decomposition
别人都放在图论里, 就我一个放在数据结构里。
推荐博客: 树链剖分详解
题目链接: Luogu P3384 【模板】树链剖分
时间复杂度:
Dfs1
: (Theta(n))Dfs2
: (Theta(n))PathModify
: (Omega(lg n))PathGetSum
: (Omega(lg n))SubTreeModify
: (Omega(lg n))SubTreeGetSum
: (Omega(lg n))
可以换用树状数组, 常数更小。
#include <cstdio>
#include <vector>
#include <algorithm>
struct Node {
long long value, delta;
Node *left, *right;
int l, r;
Node() {
left = right = nullptr;
l = r = delta = value = 0;
}
~Node() {
if (left) {
delete left;
delete right;
}
}
} *root;
std::vector<int> adj[100010];
int heavy[100010], size[100010], father[100010], top[100010], depth[100010];
int new_index[100010];
long long original_value[100010], indexed_value[100010];
int maxtop, n, m;
long long kMod;
void Dfs1(const int &cur, const int &fathernode) {
father[cur] = fathernode,
depth[cur] = depth[fathernode] + 1,
size[cur] = 1;
for (auto i : adj[cur]) {
if (i != fathernode) {
Dfs1(i, cur),
size[cur] += size[i];
if (size[i] > size[heavy[cur]]) heavy[cur] = i;
}
}
}
void Dfs2(const int &cur, const int &topnode) {
static int index_count(0);
new_index[cur] = ++index_count,
indexed_value[index_count] = original_value[cur];
top[cur] = topnode;
if (heavy[cur]) {
Dfs2(heavy[cur], topnode);
for (auto i : adj[cur]) {
if (i != father[cur] && i != heavy[cur]) {
Dfs2(i, i);
}
}
}
}
#define PUSH_UP(cur) cur->value = cur->left->value + cur->right->value;
void Build(Node *cur, const int &l, const int &r) {
if (l == r) {
cur->value = indexed_value[l];
cur->l = cur->r = l;
} else {
cur->left = new Node, cur->right = new Node;
register int mid((l + r) >> 1);
cur->l = l, cur->r = r;
Build(cur->left, l, mid), Build(cur->right, mid + 1, r);
PUSH_UP(cur);
}
}
#define PUSH_DOWN(cur) if (cur->delta) {cur->left->value = (cur->left->value + cur->delta * (cur->left->r - cur->left->l + 1)) % kMod, cur->right->value = (cur->right->value + cur->delta * (cur->right->r - cur->right->l + 1)) % kMod, cur->left->delta = (cur->left->delta + cur->delta) % kMod, cur->right->delta = (cur->right->delta + cur->delta) % kMod, cur->delta = 0;}
void Modify(Node *cur, const int &l, const int &r, const long long &kDelta) {
if (l <= cur->l && cur->r <= r) {
cur->value += kDelta* ((cur->r - cur->l) + 1),
cur->delta += kDelta;
} else {
PUSH_DOWN(cur);
register int mid((cur->l + cur->r) >> 1);
if (l <= mid) Modify(cur->left, l, r, kDelta);
if (mid < r) Modify(cur->right, l, r, kDelta);
PUSH_UP(cur);
}
}
long long GetSum(Node *cur, const int &l, const int &r) {
if (l <= cur->l && cur->r <= r) {
return cur->value;
} else {
PUSH_DOWN(cur);
register long long ret(0);
register int mid((cur->l + cur->r) >> 1);
if (l <= mid) (ret += GetSum(cur->left, l, r)) %= kMod;
if (mid < r) (ret += GetSum(cur->right, l, r)) %= kMod;
return ret % kMod;
}
}
inline void PathModify(const int &x, const int &y, const long long &kDelta) {
register int a(x), b(y);
while (top[a] != top[b]) {
if (depth[top[a]] < depth[top[b]]) std::swap(a, b);
Modify(root, new_index[top[a]], new_index[a], kDelta);
a = father[top[a]];
}
if (depth[a] > depth[b]) std::swap(a, b);
Modify(root, new_index[a], new_index[b], kDelta);
}
inline long long PathGetSum(const int &x, const int &y) {
register int a(x), b(y);
register long long ret(0ll);
while (top[a] != top[b]) {
if (depth[top[a]] < depth[top[b]]) std::swap(a, b);
(ret += GetSum(root, new_index[top[a]], new_index[a])) %= kMod;
a = father[top[a]];
}
if (depth[a] > depth[b]) std::swap(a, b);
return (ret + GetSum(root, new_index[a], new_index[b])) % kMod;
}
inline void SubTreeModify(const int &x, const long long &kDelta) {
Modify(root, new_index[x], new_index[x] + size[x] - 1, kDelta);
}
inline long long SubTreeGetSum(const int &x) {
return GetSum(root, new_index[x], new_index[x] + size[x] - 1);
}
int main(int argc, char const *argv[]) {
scanf("%d %d %d %lld", &n, &m, &maxtop, &kMod);
for (int i(1); i <= n; ++i) scanf("%lld", &original_value[i]);
for (int i(1), u, v; i < n; ++i) {
scanf("%d %d", &u, &v),
adj[u].push_back(v),
adj[v].push_back(u);
}
Dfs1(maxtop, maxtop), Dfs2(maxtop, maxtop),
root = new Node,
Build(root, 1, n);
long long z;
register int opt, x, y;
while (m--) {
scanf("%d", &opt);
switch (opt) {
case 1: {
scanf("%d %d %lld", &x, &y, &z),
PathModify(x, y, z % kMod);
break;
}
case 2: {
scanf("%d %d", &x, &y),
printf("%lld
", PathGetSum(x, y));
break;
}
case 3: {
scanf("%d %lld", &x, &z),
SubTreeModify(x, z % kMod);
break;
}
case 4: {
scanf("%d", &x),
printf("%lld
", SubTreeGetSum(x));
break;
}
}
}
return 0;
}