• Python中单线程、多线程与多进程的效率对比实验



    Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。

    对比实验

    资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率

    操作系统 CPU 内存 硬盘
    Windows 10 双核 8GB 机械硬盘
    (1)引入所需要的模块
    import requests
    import time
    from threading import Thread
    from multiprocessing import Process




    def count(x, y):
        # 使程序完成50万计算
        c = 0
        while c < 500000:
            c += 1
            x += x
            y += y
    


    (2)定义CPU密集的计算函数
    (3)定义IO密集的文件读写函数
    def write():
        f = open("test.txt", "w")
        for x in range(5000000):
            f.write("testwrite
    ")
        f.close()
    def read():
        f = open("test.txt", "r")
        lines = f.readlines()
        f.close()
    



    _head = {
                'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'}
    url = "http://www.tieba.com"
    def http_request():
        try:
            webPage = requests.get(url, headers=_head)
            html = webPage.text
            return {"context": html}
        except Exception as e:
            return {"error": e}


    (4) 定义网络请求函数
    (5)测试线性执行IO密集操作、CPU密集操作所需时间、网络请求密集型操作所需时间



    # CPU密集操作
    t = time.time()
    for x in range(10):
        count(1, 1)
    print("Line cpu", time.time() - t)
    # IO密集操作
    t = time.time()
    for x in range(10):
        write()
        read()
    print("Line IO", time.time() - t)
    # 网络请求密集型操作
    t = time.time()
    for x in range(10):
        http_request()
    print("Line Http Request", time.time() - t)
    
    


    (6)测试多线程并发执行CPU密集操作所需时间输出

    • CPU密集:95.6059999466、91.57099986076355 92.52800011634827、 99.96799993515015
    • IO密集:24.25、21.76699995994568、21.769999980926514、22.060999870300293
    • 网络请求密集型: 4.519999980926514、8.563999891281128、4.371000051498413、4.522000074386597、14.671000003814697


    counts = []
    t = time.time()
    for x in range(10):
        thread = Thread(target=count, args=(1,1))
        counts.append(thread)
        thread.start()
    e = counts.__len__()
    while True:
        for th in counts:
            if not th.is_alive():
                e -= 1
        if e <= 0:
            break
    print(time.time() - t)
    
    

    Output: 99.9240000248 、101.26400017738342、102.32200002670288

    (7)测试多线程并发执行IO密集操作所需时间

    def io():
        write()
        read()
    t = time.time()
    ios = []
    t = time.time()
    for x in range(10):
        thread = Thread(target=count, args=(1,1))
        ios.append(thread)
        thread.start()
    e = ios.__len__()
    while True:
        for th in ios:
            if not th.is_alive():
                e -= 1
        if e <= 0:
            break
    print(time.time() - t)
    



    Output: 25.69700002670288、24.02400016784668

    (8)测试多线程并发执行网络密集操作所需时间
    t = time.time()
    ios = []
    t = time.time()
    for x in range(10):
        thread = Thread(target=http_request)
        ios.append(thread)
        thread.start()
    e = ios.__len__()
    while True:
        for th in ios:
            if not th.is_alive():
                e -= 1
        if e <= 0:
            break
    print("Thread Http Request", time.time() - t)
    
    



    Output: 0.7419998645782471、0.3839998245239258、0.3900001049041748

    (9)测试多进程并发执行CPU密集操作所需时间
    counts = []
    t = time.time()
    for x in range(10):
        process = Process(target=count, args=(1,1))
        counts.append(process)
        process.start()
    e = counts.__len__()
    while True:
        for th in counts:
            if not th.is_alive():
                e -= 1
        if e <= 0:
            break
    print("Multiprocess cpu", time.time() - t)
    



    Output: 54.342000007629395、53.437999963760376

    (10)测试多进程并发执行IO密集型操作
    t = time.time()
    ios = []
    t = time.time()
    for x in range(10):
        process = Process(target=io)
        ios.append(process)
        process.start()
    e = ios.__len__()
    while True:
        for th in ios:
            if not th.is_alive():
                e -= 1
        if e <= 0:
            break
    print("Multiprocess IO", time.time() - t)
    



    Output: 12.509000062942505、13.059000015258789

    (11)测试多进程并发执行Http请求密集型操作
    t = time.time()
    httprs = []
    t = time.time()
    for x in range(10):
        process = Process(target=http_request)
        ios.append(process)
        process.start()
    
    e = httprs.__len__()
    while True:
        for th in httprs:
            if not th.is_alive():
                e -= 1
        if e <= 0:
            break
    print("Multiprocess Http Request", time.time() - t)
    



    Output: 0.5329999923706055、0.4760000705718994


    实验结果
      CPU密集型操作 IO密集型操作 网络请求密集型操作
    线性操作 94.91824996469 22.46199995279 7.3296000004
    多线程操作 101.1700000762 24.8605000973 0.5053332647
    多进程操作 53.8899999857 12.7840000391 0.5045000315

    通过上面的结果,我们可以看到:
    >

    • 多线程在IO密集型的操作下似乎也没有很大的优势(也许IO操作的任务再繁重一些就能体现出优势),在CPU密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势便非常显著了
    • 多进程无论是在CPU密集型还是IO密集型以及网络请求密集型(经常发生线程阻塞的操作)中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用CPU等资源,所以对于这种情况下,我们可以选择多线程来执行
      多线程的效果
  • 相关阅读:
    第三方登陆--新浪
    YII2.0邮箱发送
    MYSQL 数据库实现远程连接
    MEMCACHE所有方法及参数详解
    把时间转成适合符合日常习惯的格式【js】
    mvc的自带json序列化的datetime在js中的解析
    如何在word中的第3+n页处插入页面并重新从1开始
    古怪的运算符=+
    【摘录】某表含有N个字段超精简模糊查询方法
    C#中快速释放内存,任务管理器可查证
  • 原文地址:https://www.cnblogs.com/fonttian/p/9162753.html
Copyright © 2020-2023  润新知