• TF



    卷积网络

    import tensorflow as tf
    import random
    import numpy as np
    import matplotlib.pyplot as plt
    import datetime
    %matplotlib inline
    
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("data/", one_hot=True)
    
    Extracting data/train-images-idx3-ubyte.gz
    Extracting data/train-labels-idx1-ubyte.gz
    Extracting data/t10k-images-idx3-ubyte.gz
    Extracting data/t10k-labels-idx1-ubyte.gz
    


    tf.reset_default_graph() 
    sess = tf.InteractiveSession()
    x = tf.placeholder("float", shape = [None, 28,28,1]) #shape in CNNs is always None x height x width x color channels
    y_ = tf.placeholder("float", shape = [None, 10]) #shape is always None x number of classes
    


    卷积层

    W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))#shape is filter x filter x input channels x output channels
    b_conv1 = tf.Variable(tf.constant(.1, shape = [32])) #shape of the bias just has to match output channels of the filter
    


    h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1
    h_conv1 = tf.nn.relu(h_conv1)
    h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    def conv2d(x, W):
        return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    

    第二个卷积层

    # Second Conv and Pool Layers  第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1)) # 32-第一次卷积后得到32个特征图 
    b_conv2 = tf.Variable(tf.constant(.1, shape = [64]))
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    # 卷积层只是进行特征提取,最终还是需要全连接层 来利用特征
    
    
    

    全连接层

    
    # First Fully Connected Layer 第一个全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1)) 
    # 7 - 28经过两次 relu 变成 7;有64个图;将这些特征转换为 1024 维特征
    
    b_fc1 = tf.Variable(tf.constant(.1, shape = [1024])) # 输出 1024,所以b也是1024
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) # 将上述特征矩阵拉长为一条,来执行全连接任务
    
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
    
    # Dropout Layer 
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  # 保留率
    
    # Second Fully Connected Layer 第二个全连接层
    W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) # 将 1024 个特征映射为 10 个分类。
    b_fc2 = tf.Variable(tf.constant(.1, shape = [10]))
    
    # Final Layer
    y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    

    求解

    crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits = y)) # 损失函数
    trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss)
    # 这里使用 Adam, Adam 相比 梯度下降(学习率不变),原理相似,会自适应调整学习率,学习率一次比一次小,更常用。
    
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    sess.run(tf.global_variables_initializer())
    
    batchSize = 50
    for i in range(1000):
        batch = mnist.train.next_batch(batchSize)
        trainingInputs = batch[0].reshape([batchSize,28,28,1])
        trainingLabels = batch[1]
        if i%100 == 0:
            trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainingInputs, y_: trainingLabels, keep_prob: 1.0})
            print ("step %d, training accuracy %g"%(i, trainAccuracy))
        trainStep.run(session=sess, feed_dict={x: trainingInputs, y_: trainingLabels, keep_prob: 0.5})
    
    step 0, training accuracy 0.14
    step 100, training accuracy 0.94
    step 200, training accuracy 0.96
    step 300, training accuracy 0.98
    step 400, training accuracy 0.96
    step 500, training accuracy 1
    step 600, training accuracy 0.98
    step 700, training accuracy 0.98
    step 800, training accuracy 1
    step 900, training accuracy 0.98
  • 相关阅读:
    jdk9以上配置远程断点调试debug
    记解决grpc报错:HTTP/2 client preface string missing or corrupt. Hex dump for received bytes
    CENTOS7静默安装ORACLE11G及数据泵迁移
    数据链路层(7) 链路层设备
    数据链路层(6) 局域网 无线局域网 广域网
    数据链路层(5) 动态分配信道 ALOHA协议、CSMA协议、CSMA/CD协议、CSMA/CA
    数据链路层(3) 流量控制
    数据链路层(2) 差错控制
    数据链路层(1) 数据链路层基本概念
    数据链路层(4) 静态划分信道
  • 原文地址:https://www.cnblogs.com/fldev/p/14403426.html
Copyright © 2020-2023  润新知