Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.
Follow up:
Did you use extra space?
A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement uses O(m + n) space, but still not the best solution.
Could you devise a constant space solution?
1.O(m+n)space,两个数组m和n分别存储第i行和第j列有没有零,比较慢
2.constant space ,利用矩阵的第零行和第零列分别存储第i行和第j列有没有零,需要注意的是再用两个变量row和column来表示第零行和第零列是否有零存在,因为这是边界情况
public class S073 { public void setZeroes(int[][] matrix) { //O(m+n) space slow /* int [] m = new int[matrix.length]; int [] n = new int[matrix[0].length]; for (int i = 0;i<matrix.length;i++) { for (int j = 0;j<matrix[0].length;j++) { if (matrix[i][j] == 0) { m[i] = -1; n[j] = -1; } } } for (int i = 0;i<matrix.length;i++) { if (m[i] == -1) { for (int j = 0;j<matrix[0].length;j++) { matrix[i][j] = 0; if (n[j] == -1) { for (int k = 0;k<matrix.length;k++) { matrix[k][j] = 0; } } } } } */ //利用矩阵的第零行和第零列分别来存每一列和每一行是否有零存在 int row = -1; int column = -1; for (int i = 0;i<matrix.length;i++) { for (int j = 0;j<matrix[0].length;j++) { if (matrix[i][j] == 0) { if (i == 0 ) { row = 0; } if (j == 0) { column = 0; } matrix[0][j] = 0; //第零行 matrix[i][0] = 0; //第零列 } } } for (int i = 1;i<matrix.length;i++) { if (matrix[i][0] == 0) { for (int j = 1;j<matrix[0].length;j++) { matrix[i][j] = 0; } } } for (int j = 1;j<matrix[0].length;j++) { if (matrix[0][j] == 0) { for (int i = 1;i<matrix.length;i++) { matrix[i][j] = 0; } } } if (row == 0) { for (int i = 0;i<matrix[0].length;i++) { matrix[0][i] = 0; } } if (column == 0) { for (int i = 0;i<matrix.length;i++) { matrix[i][0] = 0; } } } }