• 聚宽常用函数汇总


    1、过滤停牌

    def set_feasible_stocks(stock_list,days,context):
        # 得到是否停牌信息的dataframe,停牌的1,未停牌得0
        suspened_info_df = get_price(list(stock_list), 
                           start_date=context.current_dt, 
                           end_date=context.current_dt, 
                           frequency='daily', 
                           fields='paused'
        )['paused'].T
        # 过滤停牌股票 返回dataframe
        unsuspened_index = suspened_info_df.iloc[:,0]<1
        # 得到当日未停牌股票的代码list:
        unsuspened_stocks = suspened_info_df[unsuspened_index].index
        # 进一步,筛选出前days天未曾停牌的股票list:
        feasible_stocks = []
        current_data = get_current_data()
        for stock in unsuspened_stocks:
            if sum(attribute_history(stock, days, unit = '1d',fields = ('paused'), skip_paused = False))[0] == 0:
                feasible_stocks.append(stock)
        return feasible_stocks

     2、交易日迁移

    def shift_trading_day(date,shift):
        # 获取所有的交易日,返回一个包含所有交易日的 list,元素值为 datetime.date 类型.
        tradingday = get_all_trade_days()
        # 得到date之后shift天那一天在列表中的行标号 返回一个数
        shiftday_index = list(tradingday).index(date)+shift
        # 根据行号返回该日日期 为datetime.date类型
        return tradingday[shiftday_index]

     3、选取多头排列的股票

    def sel_duotou_list(security,date):
        sel_list = []
        for stock in security:
            try:
                ma5 = MA(stock, date, timeperiod=5)[stock]
                ma21 = MA(stock, date, timeperiod=21)[stock]
                ma30 = MA(stock, date, timeperiod=30)[stock]
                ma55 = MA(stock, date, timeperiod=55)[stock]
                ma89 = MA(stock, date, timeperiod=89)[stock]
                ma120 = MA(stock, date, timeperiod=120)[stock]
                if (ma5>ma21) & (ma21>ma30) & (ma30>ma55):
                    sel_list.append(stock)
            except:
                continue
        return sel_list

     4.画k线图

    import matplotlib.pyplot as plt
    import mpl_finance
    from matplotlib.pylab import date2num
    import datetime
    
    quotes=attribute_history('000099.XSHE', 50, unit='1d',
                fields=['open', 'high', 'low', 'close'],
                skip_paused=True, df=True, fq='pre')
    
    data_list = []
    for dates, row in quotes.iterrows():
        #dates为Datafrema数据,强制转换为str方可使用
        date_time = datetime.datetime.strptime(str(dates), '%Y-%m-%d %H:%M:%S')
        #接收datetime.datetime数据
        t = date2num(date_time)
        open, high, low, close = row[:4]
        datas = (t, open, high, low, close)
        data_list.append(datas)
    
    fig, ax = plt.subplots()
    fig.subplots_adjust(bottom=0.2)
    
    # 设置x轴为日期
    ax.xaxis_date()
    plt.xticks(rotation=45)
    plt.yticks()
    plt.title('000001.XSHE: 2016/01/01-2019/02/01')
    plt.xlabel("时间")
    plt.ylabel("股价(元)")
    
    mpl_finance.candlestick_ohlc(ax=ax, quotes=data_list, width=0.6, colorup='b', colordown='r')
    plt.grid(True)
    
    plt.show()
  • 相关阅读:
    算法之递归
    初读 c# IL中间语言
    sql语句转为Model
    WPF-悬浮窗(类似于360)
    call,apply
    作用域题目
    css BFC
    数组扁平化 flatten
    常见的异步题
    setTimeout、Promise、Async/Await 的区别
  • 原文地址:https://www.cnblogs.com/figo-studypath/p/10935666.html
Copyright © 2020-2023  润新知