• Bellman-Ford 最短路径算法


    算法证明:http://courses.csail.mit.edu/6.006/spring11/lectures/lec15.pdf

    先来看一个这样的图:

    这是含有负边权的,如果是用djistra的话将会进行无限次松弛操作。从这里可以看出松弛操作是有一点问题的,如果存在负环,将无止尽的松弛,最短路也就不存在了。还有就是选择不同的遍历顺序对于松弛操作来说是挺重要的。今天就来了解一下聪明的Bellman-Ford算法吧!

    Bellman-Ford算法每一轮把边按照一定的顺序,逐条边进行松弛。经过|V|-1轮后,得到的必定是最短路径。

    献上松弛操作和Bellman-Ford算法的伪代码:

    /*
    松弛操作
    */
    for v in V:
        dist[v] = ∞
    dist[s]=0
    while some edge(u,v) has dist[v]>dist[u]+w(u,v):
        pick such an edge(u,v)
        relax(u,v):
            if dist[v]>dist[u]+w(u,v):
                dist[v]=dist[u]+w(u,v)
    
    
    /*
    Bellman-Ford
    */
    for v in V:
        dist[v] = ∞
    dist[s]=0
    for i from 1 to |V|-1:
        for(u,v)in E:
        relax(u,v):
            if dist[v]>dist[u]+w(u,v):
                dist[v]=dist[u]+w(u,v)

    接下来就以上图为例,按照以下顺序处理所有的边:(A,B),(A,C),(B,C),(B,D),(B,E),(E,D),(D,B),(D,C).

    然后进行第一次迭代:

    最开始dist数组的内容为[0,∞,∞,∞,∞],现在处理(A,B),由于dist[B]=∞,dist[A]+w(A,B)=-1,此时应更新dist[B],即dist为[0,-1,∞,∞,∞]。

    同理,按照顺序逐个处理边,将得到以下的dist变化过程:

    [0,-1,4,∞,∞]      (A,C)

    [0,-1,2,∞,∞]  (B,C)

    [0,-1,2,1,∞]  (B,D)

    [0,-1,2,1,1]  (B,E)

    [0,-1,2,-2,1]  (E,D)

    [0,-1,2,-2,1]  (D,B)

    [0,-1,2,-2,1]  (D,C)

    第一轮的最后结果就为上面最后一行,当然了,这个不一定是最优的,因此我们还需要进行下一轮,经过|V-1|次后就一定能求出最短路了。

    当然,存在负环是无法得到最短路的,此时只需要在最后进行判断,对每条边都判断以下能不能再进行松弛操作,如果存在可以的边,那就是出现负环了。

  • 相关阅读:
    Python2 和 Python3的区别 更新中
    CentOS下图形界面安装_Orcaale 11g
    Nmap_使用介绍
    shell_innobackup增量备份步骤
    shell_跳板机推送公钥
    shell_clean_log
    shell_xtrabackup_backup_mysql
    gitlab免密登录
    gitlab安装与部署
    git合并分支
  • 原文地址:https://www.cnblogs.com/fht-litost/p/9191390.html
Copyright © 2020-2023  润新知