• Codeforces Round #284 (Div. 1) C. Array and Operations 二分图最大匹配


    题目链接:

    http://codeforces.com/problemset/problem/498/C

    C. Array and Operations

    time limit per test1 second
    memory limit per test256 megabytes
    #### 问题描述 > You have written on a piece of paper an array of n positive integers a[1], a[2], ..., a[n] and m good pairs of integers (i1, j1), (i2, j2), ..., (im, jm). Each good pair (ik, jk) meets the following conditions: ik + jk is an odd number and 1 ≤ ik < jk ≤ n. > > In one operation you can perform a sequence of actions: > > take one of the good pairs (ik, jk) and some integer v (v > 1), which divides both numbers a[ik] and a[jk]; > divide both numbers by v, i. e. perform the assignments: and . > Determine the maximum number of operations you can sequentially perform on the given array. Note that one pair may be used several times in the described operations. #### 输入 > The first line contains two space-separated integers n, m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100). > > The second line contains n space-separated integers a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — the description of the array. > > The following m lines contain the description of good pairs. The k-th line contains two space-separated integers ik, jk (1 ≤ ik < jk ≤ n, ik + jk is an odd number). > > It is guaranteed that all the good pairs are distinct. #### 输出 > Output the answer for the problem. ####样例输入 > 3 2 > 8 12 8 > 1 2 > 2 3

    样例输出

    2

    题意

    给你n个数a[],然后m个顶点对ik,jk,满足ik+jk==odd,每次操作你可以任选一个顶点对,和一个>1的整数,然后有a[ik]=a[ik]/v, a[jk]=a[jk]/v,问你最多能操作几次,v必须是公约数。

    题解

    首先,它给的所有顶点对都是连接下标为奇偶的,这是在暗示我们它是各二部图!一个贪心的想法,显然我们选的v肯定是质因子,而且不同的质因子是独立的。 我们可以枚举所有的质因子,对每个质因子都建一张图,跑最大流。

    代码

    #include<map>
    #include<set>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<ctime>
    #include<vector>
    #include<cstdio>
    #include<string>
    #include<bitset>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<functional>
    using namespace std;
    #define X first
    #define Y second
    #define mkp make_pair
    #define lson (o<<1)
    #define rson ((o<<1)|1)
    #define mid (l+(r-l)/2)
    #define sz() size()
    #define pb(v) push_back(v)
    #define all(o) (o).begin(),(o).end()
    #define clr(a,v) memset(a,v,sizeof(a))
    #define bug(a) cout<<#a<<" = "<<a<<endl
    #define rep(i,a,b) for(int i=a;i<(b);i++)
    #define scf scanf
    #define prf printf
    
    typedef int LL;
    typedef vector<int> VI;
    typedef pair<int,int> PII;
    typedef vector<pair<int,int> > VPII;
    
    const int INF=0x3f3f3f3f;
    const LL INFL=0x3f3f3f3f3f3f3f3fLL;
    const double eps=1e-8;
    const double PI = acos(-1.0);
    
    //start----------------------------------------------------------------------
    const int maxn=111;
    
    struct Edge{
        int u,v,cap,flow;
        Edge(int u,int v,int c,int f):u(u),v(v),cap(c),flow(f){}
    };
    
    struct Dinic{
        int n,m,s,t;
        vector<Edge> egs;
        vector<int> G[maxn];
        bool vis[maxn];
        int d[maxn];
        int cur[maxn];
    
        void init(int n){
            this->n=n;
            for(int i=0;i<n;i++) G[i].clear();
            egs.clear();
        }
    
        void addEdge(int u,int v,int c){
            egs.pb(Edge(u,v,c,0));
            egs.pb(Edge(v,u,0,0));
            m=egs.sz();
            G[u].pb(m-2);
            G[v].pb(m-1);
        }
    
        bool BFS(){
            clr(vis,0);
            queue<int> Q;
            Q.push(s);
            d[s]=0;
            vis[s]=1;
            while(!Q.empty()){
                int x=Q.front(); Q.pop();
                for(int i=0;i<G[x].sz();i++){
                    Edge& e=egs[G[x][i]];
                    if(!vis[e.v]&&e.cap>e.flow){
                        vis[e.v]=1;
                        d[e.v]=d[x]+1;
                        Q.push(e.v);
                    }
                }
            }
            return vis[t];
        }
    
        int DFS(int x,int a){
            if(x==t||a==0) return a;
            int flow=0,f;
            for(int &i=cur[x];i<G[x].sz();i++){
                Edge& e=egs[G[x][i]];
                if(d[x]+1==d[e.v]&&(f=DFS(e.v,min(a,e.cap-e.flow)))>0){
                    e.flow+=f;
                    egs[G[x][i]^1].flow-=f;
                    flow+=f;
                    a-=f;
                    if(a==0) break;
                }
            }
            return flow;
        }
    
        int maxFlow(int s,int t){
            this->s=s;
            this->t=t;
            int flow=0;
            while(BFS()){
                clr(cur,0);
                flow+=DFS(s,INF);
            }
            return flow;
        }
    }dinic;
    
    int arr[maxn];
    PII nds[maxn];
    
    int main() {
        int n,m;
        scf("%d%d",&n,&m);
        for(int i=1;i<=n;i++) scf("%d",&arr[i]);
    
        VI fac;
        for(int i=1;i<=n;i++){
            int x=arr[i];
            for(int i=2;i*i<=x;i++){
                if(x%i==0){
                    fac.pb(i);
                    while(x%i==0) x/=i;
                }
            }
            if(x>1) fac.pb(x);
        }
    
        sort(all(fac));
    
        fac.erase(unique(all(fac)),fac.end());
    
        rep(i,0,m){
            int u,v;
            scf("%d%d",&u,&v);
            if(u%2) swap(u,v);
            nds[i]=mkp(u,v);
        }
    
        int ans=0;
    
        rep(i,0,fac.sz()){
            dinic.init(n+2);
            int k=fac[i];
            rep(j,0,m){
                dinic.addEdge(nds[j].X,nds[j].Y,INF);
            }
            for(int j=1;j<=n;j++){
                int c=0,x=arr[j];
                while(x%k==0) x/=k,c++;
                if(j&1){
                    dinic.addEdge(j,n+1,c);
                }else{
                    dinic.addEdge(0,j,c);
                }
            }
            ans+=dinic.maxFlow(0,n+1);
        }
    
        prf("%d
    ",ans);
    
        return 0;
    }
    
    //end-----------------------------------------------------------------------
  • 相关阅读:
    HTTPS原理浅析
    Java8 HashMap源码分析
    Java8 ArrayList源码分析
    Java反射
    Java泛型
    Tensorflow卷积神经网络
    Java8 Stream简介
    java.io与网络通信
    Python实现RNN
    域名系统DNS简介
  • 原文地址:https://www.cnblogs.com/fenice/p/5894678.html
Copyright © 2020-2023  润新知