题目链接:
http://acm.hust.edu.cn/vjudge/problem/47664
Eleven
输入
The input file contains several test cases, each of them as described below.
A single line that contains an integer N (1 ≤ N ≤ 10100).
输出
For each test case, output a line with an integer representing the number of eleven-multiple-anagrams
of N . Because this number can be very large, you are required to output the remainder of dividing it
by 109 + 7.
样例
sample input
2090
16510
201400000000000000000000000000sample output
2
12
0
题意
给你一串数,求由这些数排列组合成的能被11整除的数的个数。
题解
能被11整除的数有一个特点,(偶数位的和-奇数位的和)%11=0;
dp[i][j][k] (0<=i-1<=9) 表示统计到i-1的时候,偶数位已经有j个数时,(y-x)%11==k(y代表偶数位和,x代表奇数位和)的情况数。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int maxn = 111;
const int maxm = 15;
const int mod = 1e9 + 7;
char str[maxn];
int cntv[maxm];
int n;
LL C[maxn][maxn];
LL dp[maxm][maxn][maxm];
LL solve(int n) {
memset(dp, 0, sizeof(dp));
dp[0][0][0] = 1;
int sum = 0,need=n/2;
for (int i = 1; i <= 10; i++) {
for (int j = 0; j <= sum&&j <= need; j++) {
for (int dj = 0; dj <= cntv[i - 1] && (j + dj) <= need; dj++) {
int dx = (dj - (cntv[i - 1] - dj))*(i-1)%11;
dx = (dx%11 + 11) % 11;
for (int k = 0; k < 11; k++) {
int nk = (k + dx) % 11;
dp[i][j + dj][nk] = (dp[i][j + dj][nk]+dp[i - 1][j][k]*C[need-j][dj]%mod*C[n-need-(sum-j)][cntv[i-1]-dj]%mod)%mod;
}
}
}
sum += cntv[i - 1];
}
return dp[10][need][0];
}
void pre() {
memset(C, 0, sizeof(C));
C[0][0] = 1;
for (int i = 1; i < maxn; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++) {
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
}
}
}
void init() {
memset(cntv, 0, sizeof(cntv));
}
int main() {
pre();
while (scanf("%s", str) == 1) {
init();
n = strlen(str);
for (int i = 0; i < n; i++) {
cntv[str[i] - '0']++;
}
LL ans = solve(n);
if (cntv[0]) {
//扣掉第一位为0的情况
cntv[0]--;
ans -= solve(n - 1);
}
ans = (ans%mod + mod) % mod;
printf("%lld
", ans);
}
return 0;
}
Notes
确定阶段的划分很重要!比如这题,用不同的数字作为阶段性,非常典型。
往往找到了阶段性,对状态转移方程的设计也会更明确。