• Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 奇环


    题目链接:

    点这里

    题目

    D. Vitaly and Cycle
    time limit per test1 second
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output

    问题描述

    After Vitaly was expelled from the university, he became interested in the graph theory.

    Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.

    Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.

    Two ways to add edges to the graph are considered equal if they have the same sets of added edges.

    Since Vitaly does not study at the university, he asked you to help him with this task.

    输入

    The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.

    Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.

    It is guaranteed that the given graph doesn't contain any loops and parallel edges. The graph isn't necessarily connected.

    输出

    Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.

    题意

    给你一个无向图,问你最少添加几条边可以形成奇环,并且输出不同的方式数。

    题解

    最多只要添加三条边,所以我们可以分类讨论:

    • 添加三条边
      一条边都没有的时候
      ans=C[n][3]
    • 添加两条边
      每个顶点的度最大为1的时候
      ans=m*(n-2)
    • 添加一条边
      对每个连通块黑白染色,假设一个连通块黑的有b个,白的有w个,则:
      ans+=b(b-1)/2+w(w-1)/2

    代码

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    using namespace std;
    
    const int maxn = 1e5 + 10;
    const int maxm = maxn * 2;
    typedef __int64 LL;
    int n, m;
    
    vector<int> G[maxn];
    int deg[maxn];
    
    int color[maxn];
    void dfs(int u, int fa,LL &cnt,LL &r,LL &b) {
        for (int i = 0; i < G[u].size(); i++) {
        	int v = G[u][i];
    		if (v == fa) continue;
    		if (!color[v]) {
    			color[v] = 3 - color[u];
    			if (color[v] == 1) r++;
    			else b++;
    			dfs(v, u, cnt, r, b);
    		}
    		else {
    			if (color[v] == color[u]) {
    				//printf("u:%d,v:%d
    ", u, v);
    				cnt++;
    			}
    		}
    	}
    }
    
    int main() {
    	memset(deg, 0, sizeof(deg));
    	scanf("%d%d", &n, &m);
    	int maxv = -1;
    	for (int i = 0; i < m; i++) {
    		int u, v;
    		scanf("%d%d", &u,&v),u--,v--;
    		G[u].push_back(v);
    		G[v].push_back(u);
    		deg[u]++, deg[v]++;
    	}
    	for (int i = 0; i < n; i++) maxv = max(maxv, deg[i]);
    	if (m == 0) {
    		LL ans = (LL)n*(n - 1)*(n - 2) / 6;
    		printf("3 %I64d
    ", ans);
    		return 0;
    	}
    	if (maxv < 2) {
    		LL ans = (LL)m*(n - 2);
    		printf("2 %I64d
    ", ans);
    		return 0;
    	}
    	memset(color,0,sizeof(color));
    	LL cnt1 = 0, cnt2 = 0;
    	for (int i = 0; i < n; i++) {
    		LL r = 1, b = 0;
    		if (!color[i]) {
    			color[i] = 1;
    			dfs(i, -1,cnt1,r,b);
    			cnt2 += r*(r - 1) / 2 + b*(b - 1) / 2;
    		}
    	}
    	if (cnt1 == 0) {
    		printf("1 %I64d
    ", cnt2);
    	}
    	else {
    		printf("0 %I64d
    ", cnt1/2);
    	}
    	return 0;
    }
    
  • 相关阅读:
    LR--用栈实现移进--归约分析(demo)
    阿里云ECS服务器socket无法连接的问题
    select客户端模型封装——回调方式快速建立客户端
    select服务器端模型封装——回调方式快速建立服务端
    python实现的ocr接口
    汉字字典树
    linux下简易端口扫描器
    Linux下cs简单通讯(socket)
    POj 1321 棋盘问题 DFS 回溯
    HDU 1097 快速幂
  • 原文地址:https://www.cnblogs.com/fenice/p/5621395.html
Copyright © 2020-2023  润新知