• uva1214 Manhattan Wiring 插头DP


    There is a rectangular area containing n × m cells. Two cells are marked with “2”, and another two with “3”. Some cells are occupied by obstacles. You should connect the two “2”s and also the two “3”s with non-intersecting lines. Lines can run only vertically or horizontally connecting centers of cells without obstacles.

    Lines cannot run on a cell with an obstacle. Only one line can run on a cell at most once. Hence, a line cannot intersect with the other line, nor with itself. Under these constraints, the total length of the two lines should be minimized. The length of a line is defined as the number of cell borders it passes. In particular, a line connecting cells sharing their border has length 1.

    Fig. 1(a) shows an example setting. Fig. 1(b) shows two lines satisfying the constraints above with minimum total length 18.

    Figure 1: An example of setting and its solution

    Input

    The input consists of multiple datasets, each in the following format.

    n m
    row1
    rown

    n is the number of rows which satisfies 2 ≤ n ≤ 9. m is the number of columns which satisfies 2 ≤ m ≤ 9. Each rowi is a sequence of m digits separated by a space. The digits mean the following.

    0: Empty

    1: Occupied by an obstacle

    2: Marked with “2”

    3: Marked with “3”

    The end of the input is indicated with a line containing two zeros separated by a space.

    Output

    For each dataset, one line containing the minimum total length of the two lines should be output. If there is no pair of lines satisfying the requirement, answer “0” instead. No other characters should be contained in the output.

    题解:https://wenku.baidu.com/view/e5314c16bcd126fff7050bf7.html?from=search

    Sample Input
    5 5
    0 0 0 0 0
    0 0 0 3 0
    2 0 2 0 0
    1 0 1 1 1
    0 0 0 0 3
    2 3
    2 2 0
    0 3 3
    6 5
    2 0 0 0 0
    0 3 0 0 0
    0 0 0 0 0
    1 1 1 0 0
    0 0 0 0 0
    0 0 2 3 0
    5 9
    0 0 0 0 0 0 0 0 0
    0 0 0 0 3 0 0 0 0
    0 2 0 0 0 0 0 2 0
    0 0 0 0 3 0 0 0 0
    0 0 0 0 0 0 0 0 0
    9 9
    3 0 0 0 0 0 0 0 2
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    2 0 0 0 0 0 0 0 3
    9 9
    0 0 0 1 0 0 0 0 0
    0 2 0 1 0 0 0 0 3
    0 0 0 1 0 0 0 0 2
    0 0 0 1 0 0 0 0 3
    0 0 0 1 1 1 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    9 9
    0 0 0 0 0 0 0 0 0
    0 3 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 2 3 2
    0 0
    Sample Output
    18
    2
    17
    12
    0
    52
    43
  • 相关阅读:
    [CF1038F]Wrap Around[AC自动机+dp]
    [LOJ#6198]谢特[后缀数组+trie+并查集]
    [CF986F]Oppa Funcan Style Remastered[exgcd+同余最短路]
    [CF587F]Duff is Mad[AC自动机+根号分治+分块]
    [CF995F]Cowmpany Cowmpensation[树形dp+拉格朗日插值]
    [CF917D]Stranger Trees[矩阵树定理+解线性方程组]
    [CF1007D]Ants[2-SAT+树剖+线段树优化建图]
    [CF1007B]Pave the Parallelepiped[组合计数+状态压缩]
    [CF1010E]Store[kd-tree]
    【JZOJ3598】【CQOI2014】数三角形
  • 原文地址:https://www.cnblogs.com/fengzhiyuan/p/8487573.html
Copyright © 2020-2023  润新知