• [CF917D]Stranger Trees[矩阵树定理+解线性方程组]


    题意

    给你 (n) 个点的无向完全图,指定一棵树 (S),问有多少棵生成树和这棵树的公共边数量为 (kin[0,n-1])

    (nleq 100)

    分析

    • 考虑矩阵树定理,把对应的树边的边权设置成 (x) 然后构造基尔霍夫矩阵, 结果记为 (val) ,有

      [val=sum_limits{i=0}^{n-1}x^ians_i ]

      其中 (ans_i) 表示和 (S) 的公共边数量为 (i) 的生成树的个数。

    • 发现这是一个关于 (x) 的多项式,我们要求每一项的系数 (ans_i) ,所以搞出 (xin[0, n -1])(val) 然后高斯消元即可。

    • 总时间复杂度为 (O(n^4))

    代码

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    #define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
    #define rep(i, a, b) for(int i = a; i <= b; ++i)
    #define pb push_back
    inline int gi() {
        int x = 0,f = 1;
        char ch = getchar();
        while(!isdigit(ch)) {
            if(ch == '-') f = -1;
            ch = getchar();
        }
        while(isdigit(ch)) {
            x = (x << 3) + (x << 1) + ch - 48;
            ch = getchar();
        }
        return x * f;
    }
    template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
    template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
    const int N = 104, mod = 1e9 + 7;
    int n;
    LL a[N][N], G[N][N], gg[N][N];
    LL Pow(LL a, LL b) {
    	LL res = 1ll;
    	for(; b; b >>= 1, a = a * a % mod) if(b & 1) res = res * a % mod;
    	return res;
    }
    void Gauss(int n, int m, LL (*G)[N]) {
    	for(int u =0, col = 0; col <= m; ++col, ++u) {
    		int sel = u;
    		for(;sel <= n && !G[sel][col]; ++sel);
    		if(sel > n) { --u; continue;}
    		if(sel ^ u) {for(int i = 1; i <= m + 1; ++i) swap(G[u][i], G[sel][i]);}
    		LL inv = Pow(G[u][col], mod - 2);
    		for(int i = col; i <= m + 1; ++i) G[u][i] = G[u][i] * inv % mod;
    		for(int v = 1; v <=n; ++v)if(u ^ v) {
    			LL x = G[v][col];
    			for(int i = col; i <= m + 1; ++i) G[v][i] = ((G[v][i] - G[u][i] * x) % mod + mod) % mod;
    		}
    	}
    }
    LL det(int n, int m, LL (*G)[N]) {
    	LL c = 0;
    	for(int u = 2, col = 2; col <= m; ++col, ++u) {
    		int sel = u;
    		for(;sel <= n && !G[sel][col]; ++sel);
    		if(sel > n) { u--; continue;}
    		if(sel ^ u) {c ^= 1; for(int i = 1; i <= m; ++i) swap(G[u][i], G[sel][i]);}
    		
    		for(int v = u + 1; v <= n; ++v) 
    		while(G[v][col]) {
    			LL x = G[v][col] / G[u][col];
    			for(int i = col; i <= m; ++i) G[v][i] = ((G[v][i] - x * G[u][i])%mod + mod) % mod;
    			if(!G[v][col]) break;
    			c ^= 1;
    			for(int i = 1; i <= m; ++i) swap(G[u][i], G[v][i]);
    		}
    	}
    	LL ans = 1ll;
    	for(int i = 2; i <= n; ++i) ans = ans * G[i][i] % mod;
    	if(c) ans = mod - ans;
    	return ans;
    }
    int main() {
    	n = gi();
    	rep(i, 1, n - 1){
    		int u = gi(), v = gi();
    		a[u][v] ++, a[v][u] ++;
    	}
    	rep(x, 0, n - 1) {
    		memset(G, 0, sizeof G);
    		rep(i, 1, n)
    		rep(j, 1, n) {
    			G[j][j] += (a[i][j] ? x : 1);
    			G[i][j] -= (a[i][j] ? x : 1);
    		}
    		rep(i, 1, n)
    		rep(j, 1, n) if(G[i][j] < 0) G[i][j] += mod;
    		gg[x][n] = det(n, n, G);
    		LL tmp = 1;
    		for(int i = 0; i < n; ++i, tmp = tmp * x % mod) gg[x][i] = tmp;
    	}
    	Gauss(n - 1, n - 1, gg);
    	for(int i = 0; i < n; ++i) printf("%lld%c", gg[i][n], i == n?'
    ':' ');
    	return 0;
    }
    
  • 相关阅读:
    解决Chrome关联HTML文件,图标不显示的问题。
    Tomcat启动超时问题Server Tomcat v7.0 Server at localhost was unable to start within 45 seconds
    matlalb 的后台运行方式
    新转移注意(caffe):ImportError: libcudart.so.7.0: cannot open shared object file: No such file or directory
    查看nvidia显卡命令
    train validation test
    lmdb数据格式
    github
    2016 hosts
    opencv3.0 imread问题
  • 原文地址:https://www.cnblogs.com/yqgAKIOI/p/10157076.html
Copyright © 2020-2023  润新知