• 2. OpenCV-Python——阈值、平滑处理、形态学操作


    一、阈值

    ret, dst = cv2.threshold(src, thresh, maxval, type)

    • src: 输入图,只能输入单通道图像,通常来说为灰度图

    • dst: 输出图

    • ret:  返回阈值的数值
    • thresh: 阈值

    • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值

    • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY;cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

    • cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0

    • cv2.THRESH_BINARY_INV THRESH_BINARY的反转

    • cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变

    • cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0

    • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

     1 # *******************阈值**********************开始
     2 import cv2
     3 import matplotlib.pyplot as plt
     4 
     5 img = cv2.imread('cat.jpg')                        # 读取图像
     6 img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)    # 灰度化
     7 
     8 ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
     9 ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
    10 ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
    11 ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
    12 ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)
    13 
    14 titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
    15 images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
    16 
    17 for i in range(6):
    18     plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    19     plt.title(titles[i])
    20     plt.xticks([]), plt.yticks([])
    21 plt.show()
    22 # *******************阈值**********************结束

    二、平滑处理

     1 # *******************平滑处理**********************开始
     2 import cv2
     3 import numpy as np
     4 # import matplotlib.pyplot as plt
     5 
     6 img = cv2.imread('lenaNoise.png')
     7 
     8 # cv2.imshow('img', img)
     9 # cv2.waitKey(0)
    10 # cv2.destroyAllWindows()
    11 
    12 # 均值滤波
    13 # 简单的平均卷积操作
    14 blur = cv2.blur(img, (3, 3))  # 3*3的卷积核
    15 
    16 # cv2.imshow('blur', blur)
    17 # cv2.waitKey(0)
    18 # cv2.destroyAllWindows()
    19 
    20 # 方框滤波
    21 # 基本和均值一样,可以选择归一化,不做归一化容易越界溢出
    22 box = cv2.boxFilter(img,-1,(3,3), normalize=True)  # -1表示在颜色通道上保持一致
    23 
    24 # cv2.imshow('box', box)
    25 # cv2.waitKey(0)
    26 # cv2.destroyAllWindows()
    27 
    28 # 高斯滤波
    29 # 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
    30 aussian = cv2.GaussianBlur(img, (5, 5), 1)
    31 
    32 # cv2.imshow('aussian', aussian)
    33 # cv2.waitKey(0)
    34 # cv2.destroyAllWindows()
    35 
    36 # 中值滤波
    37 # 相当于用中值代替
    38 median = cv2.medianBlur(img, 5)  # 中值滤波
    39 
    40 # cv2.imshow('median', median)
    41 # cv2.waitKey(0)
    42 # cv2.destroyAllWindows()
    43 
    44 # 展示所有的滤波结果
    45 res = np.hstack((blur,aussian,median))  # vstack为垂直方向
    46 #print (res)
    47 cv2.imshow('median vs average', res)
    48 cv2.waitKey(0)
    49 cv2.destroyAllWindows()
    50 # *******************平滑处理**********************结束

    三、形态学操作

    1、腐蚀操作

     1 # *******************形态学-腐蚀**********************开始
     2 import cv2
     3 import numpy as np
     4 
     5 img = cv2.imread('dige.png')
     6 
     7 cv2.imshow('img', img)
     8 cv2.waitKey(0)
     9 cv2.destroyAllWindows()
    10 
    11 kernel = np.ones((3,3),np.uint8)
    12 erosion = cv2.erode(img,kernel,iterations = 1) # irerations迭代次数
    13 
    14 cv2.imshow('erosion', erosion)
    15 cv2.waitKey(0)
    16 cv2.destroyAllWindows()
    17 # *******************形态学-腐蚀**********************结束

    2、膨胀操作

     1 # *******************形态学-膨胀**********************开始
     2 import cv2
     3 import numpy as np
     4 
     5 img = cv2.imread('dige.png')
     6 cv2.imshow('img', img)
     7 cv2.waitKey(0)
     8 cv2.destroyAllWindows()
     9 
    10 # 先腐蚀
    11 kernel = np.ones((3,3),np.uint8)
    12 erosion = cv2.erode(img,kernel,iterations = 1)
    13 # 后膨胀
    14 kernel = np.ones((3,3),np.uint8)
    15 dige_dilate = cv2.dilate(erosion,kernel,iterations = 1)
    16 
    17 cv2.imshow('dilate', dige_dilate)
    18 cv2.waitKey(0)
    19 cv2.destroyAllWindows()
    20 # *******************形态学-膨胀**********************结束

    3、开运算与闭运算

     1 # *******************形态学-开运算与闭运算**********************开始
     2 import cv2
     3 import numpy as np
     4 
     5 # 开:先腐蚀,再膨胀
     6 img = cv2.imread('dige.png')
     7 
     8 kernel = np.ones((5,5),np.uint8)
     9 opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
    10 
    11 cv2.imshow('opening', opening)
    12 cv2.waitKey(0)
    13 cv2.destroyAllWindows()
    14 
    15 # 闭:先膨胀,再腐蚀
    16 img = cv2.imread('dige.png')
    17 
    18 kernel = np.ones((5,5),np.uint8)
    19 closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
    20 
    21 cv2.imshow('closing', closing)
    22 cv2.waitKey(0)
    23 cv2.destroyAllWindows()
    24 # *******************形态学-开运算与闭运算**********************结束

    4、梯度运算

     1 # *******************形态学-梯度运算**********************开始
     2 import cv2
     3 import numpy as np
     4 
     5 # 梯度=膨胀-腐蚀
     6 pie = cv2.imread('pie.png')
     7 kernel = np.ones((7,7),np.uint8)
     8 #---------------------------------------------------------
     9 dilate = cv2.dilate(pie,kernel,iterations = 5)
    10 erosion = cv2.erode(pie,kernel,iterations = 5)
    11 
    12 res = np.hstack((dilate,erosion)) # 显示分别膨胀和腐蚀的结果
    13 cv2.imshow('res', res)
    14 cv2.waitKey(0)
    15 cv2.destroyAllWindows()
    16 
    17 #---------------------------------------------------------
    18 gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel) # 梯度运算
    19 cv2.imshow('gradient', gradient)
    20 cv2.waitKey(0)
    21 cv2.destroyAllWindows()
    22 # *******************形态学-梯度运算**********************结束

    5、礼帽与黑帽

    • 礼帽 = 原始输入-开运算结果
    • 黑帽 = 闭运算-原始输入
     1 # *******************形态学-礼帽与黑帽**********************开始
     2 import cv2
     3 import numpy as np
     4 
     5 #-------------------------------------------------------
     6 #礼帽
     7 img = cv2.imread('dige.png')
     8 cv2.imshow('image',img)
     9 kernel = np.ones((7,7),np.uint8)
    10 tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
    11 cv2.imshow('tophat', tophat)
    12 cv2.waitKey(0)
    13 cv2.destroyAllWindows()
    14 
    15 #-------------------------------------------------------
    16 #黑帽
    17 img = cv2.imread('dige.png')
    18 kernel = np.ones((7,7),np.uint8)
    19 blackhat  = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT, kernel)
    20 cv2.imshow('blackhat ', blackhat )
    21 cv2.waitKey(0)
    22 cv2.destroyAllWindows()
    23 # *******************形态学-礼帽与黑帽**********************结束

      

  • 相关阅读:
    BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)
    BZOJ 1007 [HNOI2008]水平可见直线 (栈)
    Java Date,long,String 日期转换
    android学习---- WindowManager 接口 (
    ListView 使用详解
    @synchronized (object)使用详解
    Android View坐标getLeft, getRight, getTop, getBottom
    Android:Layout_weight的深刻理解
    onTouch事件试验(覆写onTouchEvent方法,同时设置onTouchListener)
    FragmentPagerAdapter与FragmentStatePagerAdapter区别
  • 原文地址:https://www.cnblogs.com/fengxb1213/p/12997274.html
Copyright © 2020-2023  润新知