• BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)


    1009: [HNOI2008]GT考试

    Time Limit: 1 Sec  Memory Limit: 162 MB
    Submit: 4266  Solved: 2616
    [Submit][Status][Discuss]

    Description

      阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
    他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
    0

    Input

      第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

    Output

      阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

    Sample Input

    4 3 100
    111

    Sample Output

    81

    HINT

    析:先用KMP把不能出现的串先匹配出来,然后再对每种状态进行计算,dp[i][j] 表示已经匹配到 i 并转移到 j 有多少种,但是时间复杂度太高,所以要用矩阵快速幂来进行优化。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-3;
    const int maxn = 20 + 10;
    const int maxm = 3e5 + 10;
    const int mod = 100003;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, -1, 0, 1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    char s[maxn];
    int f[maxn], K;
    
    struct Matrix{
      int a[maxn][maxn];
      int n;
      Matrix(){ ms(a, 0);  }
    
      void toOne(){ FOR(i, 0, n)  a[i][i] = 1; }
      Matrix operator * (const Matrix &rhs){
        Matrix res;
        res.n = n;
        FOR(i, 0, n)  FOR(j, 0, n)
          for(int k = 0; k < n; ++k)
            res.a[i][j] = (res.a[i][j] + a[i][k] * rhs.a[k][j]) % K;
        return res;
      }
    };
    
    Matrix fast_pow(Matrix a, int n){
      Matrix res; res.n = a.n; res.toOne();
      while(n){
        if(n & 1)  res = res * a;
        n >>= 1;
        a = a * a;
      }
      return res;
    }
    
    int main(){
      scanf("%d %d %d", &n, &m, &K);
      scanf("%s", s);
      f[0] = f[1] = 0;
      for(int i = 1; i < m; ++i){
        int j = f[i];
        while(j && s[j] != s[i])  j = f[j];
        f[i+1] = s[j] == s[i] ? j+1: 0;
      }
      Matrix x;  x.n = m;
      for(int i = 0; i < m; ++i){
        for(int t = 0; t < 10; ++t){
          int j = i;
          while(j && s[j] - '0' != t)  j = f[j];
          if(s[j] - '0' == t)  ++j;
          ++x.a[i][j];
        }
      }
      Matrix ans = fast_pow(x, n);
      int res = 0;
      for(int i = 0; i < m; ++i)  res = (res + ans.a[0][i]) % K;
      printf("%d
    ", res);
      return 0;
    }
    

      

  • 相关阅读:
    实验1.2 C语言上机入门 二
    如何使用OJ系统
    (第五周)工作总结
    (第五周)团队项目2
    (第五周)团队项目1
    (第五周)立项申请更新(食物链教学工具)
    (第四周)工作总结
    (第四周)四则运算单元测试
    (第四周)词频统计单元测试
    (第三周)工作总结
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7809349.html
Copyright © 2020-2023  润新知