A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
Write a data structure CBTInserter
that is initialized with a complete binary tree and supports the following operations:
CBTInserter(TreeNode root)
initializes the data structure on a given tree with head noderoot
;CBTInserter.insert(int v)
will insert aTreeNode
into the tree with valuenode.val = v
so that the tree remains complete, and returns the value of the parent of the insertedTreeNode
;CBTInserter.get_root()
will return the head node of the tree.
Example 1:
Input: inputs = ["CBTInserter","insert","get_root"], inputs = [[[1]],[2],[]]
Output: [null,1,[1,2]]
Example 2:
Input: inputs = ["CBTInserter","insert","insert","get_root"], inputs = [[[1,2,3,4,5,6]],[7],[8],[]]
Output: [null,3,4,[1,2,3,4,5,6,7,8]]
Note:
- The initial given tree is complete and contains between
1
and1000
nodes. CBTInserter.insert
is called at most10000
times per test case.- Every value of a given or inserted node is between
0
and5000
.
M1:
以bfs的顺序,用List存tree nodes:tree[i]的左孩子tree[2i+1]、右孩子tree[2i+2]
当insert第n个node时,可以通过index找到它的parent: tree[(n-1)/2]
initialization: time = O(n), space = O(n)
insert: time = O(1), space = O(1)
get_root: time = O(1), space = O(1)
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class CBTInserter { List<TreeNode> tree; TreeNode root; public CBTInserter(TreeNode root) { tree = new ArrayList<>(); this.root = root; tree.add(root); for(int i = 0; i < tree.size(); i++) { if(tree.get(i).left != null) { tree.add(tree.get(i).left); } if(tree.get(i).right != null) { tree.add(tree.get(i).right); } } } public int insert(int v) { int size = tree.size(); TreeNode node = new TreeNode(v); tree.add(node); if(size % 2 == 0) { tree.get((size - 1) / 2).right = node; } else { tree.get((size - 1) / 2).left = node; } return tree.get((size - 1) / 2).val; } public TreeNode get_root() { return tree.get(0); } } /** * Your CBTInserter object will be instantiated and called as such: * CBTInserter obj = new CBTInserter(root); * int param_1 = obj.insert(v); * TreeNode param_2 = obj.get_root(); */
M2: 用queue存
- Traverse the binary tree by level order;
- If the current node has left and right child, pop it out, and add both of its children into the queue; otherwise, insert new node as its child;
- repeat the above till encounter the first node that does NOT have two children.
initialization: time = O(n), space = O(n)
insert: time = O(1), space = O(1)
get_root: time = O(1), space = O(1)
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class CBTInserter { Queue<TreeNode> q; TreeNode root; public CBTInserter(TreeNode root) { this.root = root; q = new LinkedList<>(); q.offer(root); while(q.peek().left != null && q.peek().right != null) { q.offer(q.peek().left); q.offer(q.peek().right); q.poll(); } } public int insert(int v) { TreeNode node = q.peek(); if(node.left == null) { node.left = new TreeNode(v); } else { node.right = new TreeNode(v); q.offer(node.left); q.offer(node.right); q.poll(); } return node.val; } public TreeNode get_root() { return root; } } /** * Your CBTInserter object will be instantiated and called as such: * CBTInserter obj = new CBTInserter(root); * int param_1 = obj.insert(v); * TreeNode param_2 = obj.get_root(); */