The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input: 2 Output: 1 Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3 Output: 2 Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4 Output: 3 Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N
≤ 30.
M1: recursion, time = O(2^n), space = O(n)
M2: dp, time = O(n), space = O(1)
class Solution { public int fib(int N) { if(N <= 1) { return N; } int f0 = 0, f1 = 1, f2 = f0 + f1; for(int i = 1; i < N; i++) { f2 = f0 + f1; f0 = f1; f1 = f2; } return f2; } }