枚举法[编辑]
- 当n=1时,全排列只有一种,不是错排,D1 = 0。
- 当n=2时,全排列有两种,即1、2和2、1,后者是错排,D2 = 1。
- 当n=3时,全排列有六种,即1、2、3;1、3、2;2、1、3;2、3、1;3、1、2;3、2、1,其中只有有3、1、2和2、3、1是错排,D3=2。用同样的方法可以知道D4=9。
- 最小的几个错排数是:D1 = 0,D2 = 1,D3=2,D4 = 9,D5 = 44,D6 = 265,D7 = 1854.[4]
递推数列法[编辑]
对于排列数较多的情况,难以采用枚举法。这时可以用递归思想推导错排数的递回关系式。
显然D1=0,D2=1。当n≥3时,不妨设n排在了第k位,其中k≠n,也就是1≤k≤n-1。那么我们现在考虑第n位的情况。
- 当k排在第n位时,除了n和k以外还有n-2个数,其错排数为Dn-2。
- 当k不排在第n位时,那么将第n位重新考虑成一个新的“第k位”,这时的包括k在内的剩下n-1个数的每一种错排,都等价于只有n-1个数时的错排(只是其中的第k位会换成第n位)。其错排数为Dn-1。
所以当n排在第k位时共有Dn-2+Dn-1种错排方法,又k有从1到n-1共n-1种取法,我们可以得到:
- Dn=(n-1)(Dn-1+Dn-2) [2]
在上面我们得到Dn=(n-1)(Dn-1+Dn-2)