• ACCEPT详解


    NAME 名称

    accept - 在一个套接字上接收一个连接

    SYNOPSIS 概述

    #include <sys/types.h>
    #include <sys/socket.h>

    int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

    DESCRIPTION 描述

    accept 函数用于基于连接的套接字 (SOCK_STREAM, SOCK_SEQPACKETSOCK_RDM). 它从未完成连接队列中取出第一个连接请求,创建一个和参数 s 属性相同的连接套接字,并为这个套接字分配一个文件描述符, 然后以这个描述符返回.新创建的描述符不再处于倾听状态.原套接字 s 不受此调用的影响.注意任意一个文件描述符标志 (任何可以被 fcntl以参数 F_SETFL 设置的值,比如非阻塞式或者异步状态)不会被 accept. 所继承.

    参数 s 是以 socket(2) 创建,用 bind(2) 绑定到一个本地地址,并且在调用了 listen(2). 之后正在侦听一个连接的套接字. 参数 addr 是一个指向结构sockaddr的指针.这个结构体以连接实体地址填充. 所谓的连接实体,就是众所周知的网络层.参数 addr 所传递的真正的地址格式依赖于所使用的套接字族. (参见 socket(2) 和各协议自己的手册页). addrlen 是一个实时参数: 它的大小应该能够足以容纳参数 addr 所指向的结构体;在函数返回时此参数将以字节数表示出返回地址的实际长度.若 addr 使用NULL作为参数,addrlen将也被置为NULL.

    如果队列中没有未完成连接套接字,并且套接字没有标记为非阻塞式, accept 将阻塞直到一个连接到达.如果一个套接字被标记为非阻塞式而队列中没有未完成连接套接字, accept 将返回EAGAIN.

    使用 select(2) 或者 poll(2). 可以在一个套接字上有连接到来时产生事件.当尝试一个新的连接时套接字读就绪,这样我们就可以调用 accept 为这个连接获得一个新的套接字.此外,你还可以设置套接字在唤醒时接收到信号 SIGIO; 细节请参见 socket(7)

    对于那些需要显式确认的协议,比如 DECNet, accept 可以看作仅仅从队列中取出下一个连接而不做确认.当在这个新的文件描述符上进行普通读写操作时暗示了确认,当关闭这个新的套接字时暗示了拒绝.目前在Linux上只有DECNet有这样的含义.

    NOTES 注意

    当接收到一个 SIGIO 信号或者 select(2) 或 poll(2) 返回读就绪并不总是意味着有新连接在等待,因为连接可能在调用 accept 之前已经被异步网络错误或者其他线程所移除.如果发生这种情况, 那么调用将阻塞并等待下一个连接的到来.为确保 accept 永远不会阻塞,传递的套接字 s 需要置 O_NONBLOCK 标志(参见 socket(7)).

    RETURN VALUE 返回值

    此调用在发生错误时返回-1.若成功则返回一个非负整数标识这个连接套接字.

    ERROR HANDLING 错误处理

    Linux accept 将一个待处理网络错误代码通过 accept 传递给新套接字 . 这种处理方式有别于其他的BSD套接字实现.为可靠操作,应用程序必须在调用 accept 之后能够检测这些为协议定义的网络错误,并且以重试解决,就象 EAGAIN 一样.对于TCP/IP这些网络错误是 ENETDOWN, EPROTO, ENOPROTOOPT, EHOSTDOWN, ENONET, EHOSTUNREACH, EOPNOTSUPP, 以及 ENETUNREACH.

    ERRORS 错误

    EAGAIN或者EWOULDBLOCK
    套接字被标记为非阻塞,且当前没有可接收的连接.
    EBADF
    描述符非法.
    ENOTSOCK
    描述符指向一个文件,而不是一个套接字.
    EOPNOTSUPP
    作为参数的套接字不是 SOCK_STREAM. 类型
    EFAULT
    参数 addr 不在用户可写地址空间之内.
    EPERM
    防火墙规则禁止连接.
    ENOBUFS,ENOMEM
    没有足够内存. 这个错误一般来说意味着内存分配受套接字缓冲区所限, 而不是没有系统内存.

    另外,新套接字和协议中定义的网络错误也可能被返回. 不同的Linux内核也可能返回下列错误 EMFILE, EINVAL, ENOSR, ENOBUFS, EPERM, ECONNABORTED, ESOCKTNOSUPPORT, EPROTONOSUPPORT, ETIMEDOUT, ERESTARTSYS.

    CONFORMING TO 兼容于

    SVr4,4.4BSD( accept 函数首次出现于BSD 4.2). BSD手册页文档定义了五个可能的错误返回值 (EBADF, ENOTSOCK, EOPNOTSUPP, EWOULDBLOCK, EFAULT). SUSv2文档的定义是EAGAIN, EBADF, ECONNABORTED, EFAULT, EINTR, EINVAL, EMFILE, ENFILE, ENOBUFS, ENOMEM, ENOSR, ENOTSOCK, EOPNOTSUPP, EPROTO, EWOULDBLOCK.

    Linux accept不继承象 O_NONBLOCK 这样的套接字标志. 这一点有别于其他的BSD套接字实现. 因此,程序应该在accept所返回的套接字上设置所有需要的标志.

    NOTE 注意

    函数 accept 的第三个参数原来被声明为'int *'(在libc4和libc5以及其他很多系统中, 比如BSD 4.*,SunOS 4, SGI);POSIX 1003.1g草案试图将其改变为 `size_t *',SunOS 5就是这么做的. 后来的POSIX草案和Single Unix Specification以及glibc2使用了 `socklen_t *'. Quoting Linus Torvalds: 引自Linus Torvalds (译注:这个家伙就是Linux的创始人,所以我保留了他老人家的原文, 仅将原文大意附后): I fails: only italicizes a single line _Any_ sane library _must_ have "socklen_t" be the same size as int. Anything else breaks any BSD socket layer stuff. POSIX initially _did_ make it a size_t, and I (and hopefully others, but obviously not too many) complained to them very loudly indeed. Making it a size_t is completely broken, exactly because size_t very seldom is the same size as "int" on 64-bit architectures, for example. And it _has_ to be the same size as "int" because that's what the BSD socket interface is. Anyway, the POSIX people eventually got a clue, and created "socklen_t". They shouldn't have touched it in the first place, but once they did they felt it had to have a named type for some unfathomable reason (probably somebody didn't like losing face over having done the original stupid thing, so they silently just renamed their blunder).

    数据类型"socklen_t"和int应该具有相同的长度.否则就会破坏 BSD套接字层的填充.POSIX开始的时候用的是size_t, Linus Torvalds(他希望有更多的人,但显然不是很多) 努力向他们解释使用size_t是完全错误的,因为在64位结构中 size_t和int的长度是不一样的,而这个参数(也就是accept函数的第三参数)的长度必须和int一致,因为这是BSD套接字接口标准.最终POSIX的那帮家伙找到了解决的办法,那就是创造了一个新的类型"socklen_t".Linux Torvalds说这是由于他们发现了自己的错误但又不好意思向大家伙儿承认,所以另外创造了一个新的数据类型. 

  • 相关阅读:
    771. Jewels and Stones
    706. Design HashMap
    811. Subdomain Visit Count
    733. Flood Fill
    117. Populating Next Right Pointers in Each Node II
    250. Count Univalue Subtrees
    94. Binary Tree Inorder Traversal
    116. Populating Next Right Pointers in Each Node
    285. Inorder Successor in BST
    292. Nim Game Java Solutin
  • 原文地址:https://www.cnblogs.com/fanweisheng/p/11065782.html
Copyright © 2020-2023  润新知