• 线段树应用及概况


    线段树概述及模板

     

    一:线段树基本概念

    1:概述

    线段树,类似区间树,是一个完全二叉树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(lgN)!

    性质:父亲的区间是[a,b],(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b],线段树需要的空间为数组大小的四倍

    2:基本操作(demo用的是查询区间最小值)

    线段树的主要操作有:

    (1):线段树的构造 void build(int node, int begin, int end);

    主要思想是递归构造,如果当前节点记录的区间只有一个值,则直接赋值,否则递归构造左右子树,最后回溯的时候给当前节点赋值

    #include <iostream>  
    using namespace std;  
      
    const int maxind = 256;  
    int segTree[maxind * 4 + 10];  
    int array[maxind];   
    /* 构造函数,得到线段树 */  
    void build(int node, int begin, int end)    
    {    
        if (begin == end)    
            segTree[node] = array[begin]; /* 只有一个元素,节点记录该单元素 */  
        else    
        {     
            /* 递归构造左右子树 */   
            build(2*node, begin, (begin+end)/2);    
            build(2*node+1, (begin+end)/2+1, end);   
               
            /* 回溯时得到当前node节点的线段信息 */    
            if (segTree[2 * node] <= segTree[2 * node + 1])    
                segTree[node] = segTree[2 * node];    
            else    
                segTree[node] = segTree[2 * node + 1];    
        }    
    }  
      
    int main()  
    {  
        array[0] = 1, array[1] = 2,array[2] = 2, array[3] = 4, array[4] = 1, array[5] = 3;  
        build(1, 0, 5);  
        for(int i = 1; i<=20; ++i)  
         cout<< "seg"<< i << "=" <<segTree[i] <<endl;  
        return 0;  
    }   
     此build构造成的树如图:

    (2):区间查询int query(int node, int begin, int end, int left, int right);

    (其中node为当前查询节点,begin,end为当前节点存储的区间,left,right为此次query所要查询的区间)

    主要思想是把所要查询的区间[a,b]划分为线段树上的节点,然后将这些节点代表的区间合并起来得到所需信息

    比如前面一个图中所示的树,如果询问区间是[0,2],或者询问的区间是[3,3],不难直接找到对应的节点回答这一问题。但并不是所有的提问都这么容易回答,比如[0,3],就没有哪一个节点记录了这个区间的最小值。当然,解决方法也不难找到:把[0,2]和[3,3]两个区间(它们在整数意义上是相连的两个区间)的最小值“合并”起来,也就是求这两个最小值的最小值,就能求出[0,3]范围的最小值。同理,对于其他询问的区间,也都可以找到若干个相连的区间,合并后可以得到询问的区间。

     
    int query(int node, int begin, int end, int left, int right)    
    {   
        int p1, p2;    
        
        /*  查询区间和要求的区间没有交集  */  
        if (left > end || right < begin)    
            return -1;    
        
        /*  if the current interval is included in  */    
        /*  the query interval return segTree[node]  */  
        if (begin >= left && end <= right)    
            return segTree[node];    
        
        /*  compute the minimum position in the  */  
        /*  left and right part of the interval  */   
        p1 = query(2 * node, begin, (begin + end) / 2, left, right);   
        p2 = query(2 * node + 1, (begin + end) / 2 + 1, end, left, right);    
        
        /*  return the expect value  */   
        if (p1 == -1)    
            return p2;    
        if (p2 == -1)    
            return p1;    
        if (p1 <= p2)    
            return  p1;    
        return  p2;      
    }   

    可见,这样的过程一定选出了尽量少的区间,它们相连后正好涵盖了整个[left,right],没有重复也没有遗漏。同时,考虑到线段树上每层的节点最多会被选取2个,一共选取的节点数也是O(log n)的,因此查询的时间复杂度也是O(log n)。

    线段树并不适合所有区间查询情况,它的使用条件是“相邻的区间的信息可以被合并成两个区间的并区间的信息”。即问题是可以被分解解决的。



    (3):区间或节点的更新 及 线段树的动态维护update (这是线段树核心价值所在,节点中的标记域可以解决N多种问题)

    动态维护需要用到标记域,延迟标记等。

    a:单节点更新

     
    void Updata(int node, int begin, int end, int ind, int add)/*单节点更新*/    
    {    
        
        if( begin == end )    
        {    
            segTree[node] += add;    
            return ;    
        }    
        int m = ( left + right ) >> 1;    
        if(ind <= m)    
            Updata(node * 2,left, m, ind, add);    
        else    
            Updata(node * 2 + 1, m + 1, right, ind, add);    
        /*回溯更新父节点*/    
        segTree[node] = min(segTree[node * 2], segTree[node * 2 + 1]);     
             
    }   

    b:区间更新(线段树中最有用的)

    需要用到延迟标记,每个结点新增加一个标记,记录这个结点是否被进行了某种修改操作(这种修改操作会影响其子结点)。对于任意区间的修改,我们先按照查询的方式将其划分成线段树中的结点,然后修改这些结点的信息,并给这些结点标上代表这种修改操作的标记。在修改和查询的时候,如果我们到了一个结点p,并且决定考虑其子结点,那么我们就要看看结点p有没有标记,如果有,就要按照标记修改其子结点的信息,并且给子结点都标上相同的标记,同时消掉p的标记。(优点在于,不用将区间内的所有值都暴力更新,大大提高效率,因此区间更新是最优用的操作)

     
    void Change(node *p, int a, int b) /* 当前考察结点为p,修改区间为(a,b]*/  
       
    {  
       
      if (a <= p->Left && p->Right <= b)  
       
      /* 如果当前结点的区间包含在修改区间内*/  
       
      {  
       
         ...... /* 修改当前结点的信息,并标上标记*/  
       
         return;  
       
      }  
       
      Push_Down(p); /* 把当前结点的标记向下传递*/  
       
      int mid = (p->Left + p->Right) / 2; /* 计算左右子结点的分隔点 
      
      if (a < mid) Change(p->Lch, a, b); /* 和左孩子有交集,考察左子结点*/  
       
      if (b > mid) Change(p->Rch, a, b); /* 和右孩子有交集,考察右子结点*/  
       
      Update(p); /* 维护当前结点的信息(因为其子结点的信息可能有更改)*/  
       
    }  


    3:主要应用

    (1):区间最值查询问题 (见模板1)

    (2):连续区间修改或者单节点更新的动态查询问题 (见模板2)

    (3):多维空间的动态查询 (见模板3)

     

    二:典型模板

    模板1:

    RMQ,查询区间最值下标---min

     
    #include<iostream>    
      
    using namespace std;    
        
    #define MAXN 100    
    #define MAXIND 256 //线段树节点个数    
        
    //构建线段树,目的:得到M数组.    
    void build(int node, int b, int e, int M[], int A[])    
    {    
        if (b == e)    
            M[node] = b; //只有一个元素,只有一个下标    
        else    
        {     
            build(2 * node, b, (b + e) / 2, M, A);    
            build(2 * node + 1, (b + e) / 2 + 1, e, M, A);    
      
            if (A[M[2 * node]] <= A[M[2 * node + 1]])    
                M[node] = M[2 * node];    
            else    
                M[node] = M[2 * node + 1];    
        }    
    }    
        
    //找出区间 [i, j] 上的最小值的索引    
    int query(int node, int b, int e, int M[], int A[], int i, int j)    
    {    
        int p1, p2;    
        
        //查询区间和要求的区间没有交集    
        if (i > e || j < b)    
            return -1;    
      
        if (b >= i && e <= j)    
            return M[node];    
       
        p1 = query(2 * node, b, (b + e) / 2, M, A, i, j);    
        p2 = query(2 * node + 1, (b + e) / 2 + 1, e, M, A, i, j);    
        
        //return the position where the overall    
        //minimum is    
        if (p1 == -1)    
            return M[node] = p2;    
        if (p2 == -1)    
            return M[node] = p1;    
        if (A[p1] <= A[p2])    
            return M[node] = p1;    
        return M[node] = p2;    
        
    }    
        
        
    int main()    
    {    
        int M[MAXIND]; //下标1起才有意义,否则不是二叉树,保存下标编号节点对应区间最小值的下标.    
        memset(M,-1,sizeof(M));    
        int a[]={3,4,5,7,2,1,0,3,4,5};    
        build(1, 0, sizeof(a)/sizeof(a[0])-1, M, a);    
        cout<<query(1, 0, sizeof(a)/sizeof(a[0])-1, M, a, 0, 5)<<endl;    
        return 0;    
    }   
    模板2:

    连续区间修改或者单节点更新的动态查询问题 (此模板查询区间和)

     
    #include <cstdio>    
    #include <algorithm>    
    using namespace std;    
         
    #define lson l , m , rt << 1    
    #define rson m + 1 , r , rt << 1 | 1   
    #define root 1 , N , 1   
    #define LL long long    
    const int maxn = 111111;    
    LL add[maxn<<2];    
    LL sum[maxn<<2];    
    void PushUp(int rt) {    
        sum[rt] = sum[rt<<1] + sum[rt<<1|1];    
    }    
    void PushDown(int rt,int m) {    
        if (add[rt]) {    
            add[rt<<1] += add[rt];    
            add[rt<<1|1] += add[rt];    
            sum[rt<<1] += add[rt] * (m - (m >> 1));    
            sum[rt<<1|1] += add[rt] * (m >> 1);    
            add[rt] = 0;    
        }    
    }    
    void build(int l,int r,int rt) {    
        add[rt] = 0;    
        if (l == r) {    
            scanf("%lld",&sum[rt]);    
            return ;    
        }    
        int m = (l + r) >> 1;    
        build(lson);    
        build(rson);    
        PushUp(rt);    
    }    
    void update(int L,int R,int c,int l,int r,int rt) {    
        if (L <= l && r <= R) {    
            add[rt] += c;    
            sum[rt] += (LL)c * (r - l + 1);    
            return ;    
        }    
        PushDown(rt , r - l + 1);    
        int m = (l + r) >> 1;    
        if (L <= m) update(L , R , c , lson);    
        if (m < R) update(L , R , c , rson);    
        PushUp(rt);    
    }    
    LL query(int L,int R,int l,int r,int rt) {    
        if (L <= l && r <= R) {    
            return sum[rt];    
        }    
        PushDown(rt , r - l + 1);    
        int m = (l + r) >> 1;    
        LL ret = 0;    
        if (L <= m) ret += query(L , R , lson);    
        if (m < R) ret += query(L , R , rson);    
        return ret;    
    }    
    int main() {    
        int N , Q;    
        scanf("%d%d",&N,&Q);    
        build(root);    
        while (Q --) {    
            char op[2];    
            int a , b , c;    
            scanf("%s",op);    
            if (op[0] == 'Q') {    
                scanf("%d%d",&a,&b);    
                printf("%lld
    ",query(a , b ,root));    
            } else {    
                scanf("%d%d%d",&a,&b,&c);    
                update(a , b , c , root);    
            }    
        }    
        return 0;    
    }  

      

    人生如修仙,岂是一日间。何时登临顶,上善若水前。
  • 相关阅读:
    Lucene:(一)建立索引文件:2。建立索引文件(一)
    Lucene:(一)建立索引文件:2。建立索引文件(二)Segment文件
    92.外边距设置 Walker
    99.元素居中及样式重置 Walker
    94.外边距踩坑 Walker
    101.列表属性 Walker
    97.boxsizing属性 Walker
    98.溢出隐藏 Walker
    95.内边距设置 Walker
    96.内边距和边框踩坑 Walker
  • 原文地址:https://www.cnblogs.com/f-society/p/14295523.html
Copyright © 2020-2023  润新知