Description
请输出(Fib(n) mod 10000)
(n leq 1000000000)
Solution
由于(n)的范围在(1e9)直接递推铁TLE,考虑矩阵快速幂
Fibonacci数列有如下性质
通过多次迭代
算是个板子题吧,记得在WUST新生赛做过一道想矩阵快速幂的题,然而正解是找规律QAQ,在此贴个板子。
Code
#include <cstdio>
#include <queue>
#include <algorithm>
#include <iostream>
#include <queue>
#include <cstring>
#include <string>
typedef long long LL;
const int MOD = 1e4;
using namespace std;
struct Matrix{
LL m[2][2];
void print(){
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++)
cout << m[i][j] << ' ';
cout << endl;
}
}
} base, ans;
Matrix times(Matrix a, Matrix b) {
Matrix ans;
ans.m[0][1] = ans.m[0][0] = ans.m[1][0] = ans.m[1][1] = 0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int k = 0; k < 2; k++)
ans.m[i][j] = (ans.m[i][j] + a.m[i][k]*b.m[k][j])%MOD;
}
}
return ans;
}
void Matrixpow(LL x) {
base.m[0][0] = base.m[1][0] = base.m[0][1] = 1;
base.m[1][1] = 0;
ans.m[0][0] = ans.m[1][1] = 1;
ans.m[0][1] = ans.m[1][0] = 0;
while (x) {
if (x&1){
ans = times(ans, base);
}
x >>= 1;
base = times(base, base);
}
}
LL N;
int main(){
while (cin >> N) {
if (N == -1) break;
if (N == 0) {
cout << "0" << endl;
continue;
}
Matrixpow(N);
cout << ans.m[0][1] % MOD << endl;
}
return 0;
}